
DATA

Apache Oozie

ISBN: 978-1-449-36992-7

US $39.99 CAN $45.99

“ In this book, the
authors have striven for
practicality, focusing on
the concepts, principles,
tips, and tricks that
developers need to get
the most out of Oozie.
A volume such as this is
long overdue. Developers
will get a lot more out of
the Hadoop ecosystem
by reading it.”

—Raymie Stata
CEO, Altiscale

“ Oozie simplifies
the managing and
automating of complex
Hadoop workloads.
This greatly benefits
both developers and
operators alike.”

—Alejandro Abdelnur
Creator of Apache Oozie

Twitter: @oreillymedia
facebook.com/oreilly

Get a solid grounding in Apache Oozie, the workflow scheduler system for
managing Hadoop jobs. In this hands-on guide, two experienced Hadoop
practitioners walk you through the intricacies of this powerful and flexible
platform, with numerous examples and real-world use cases.

Once you set up your Oozie server, you’ll dive into techniques for writing
and coordinating workflows, and learn how to write complex data pipelines.
Advanced topics show you how to handle shared libraries in Oozie, as well
as how to implement and manage Oozie’s security capabilities.

 ■ Install and configure an Oozie server, and get an overview of
basic concepts

 ■ Journey through the world of writing and configuring
workflows

 ■ Learn how the Oozie coordinator schedules and executes
workflows based on triggers

 ■ Understand how Oozie manages data dependencies
 ■ Use Oozie bundles to package several coordinator apps into

a data pipeline
 ■ Learn about security features and shared library management
 ■ Implement custom extensions and write your own EL functions

and actions
 ■ Debug workflows and manage Oozie’s operational details

Mohammad Kamrul Islam works as a Staff Software Engineer in the data
engineering team at Uber. He’s been involved with the Hadoop ecosystem
since 2009, and is a PMC member and a respected voice in the Oozie com-
munity. He has worked in the Hadoop teams at LinkedIn and Yahoo.

Aravind Srinivasan is a Lead Application Architect at Altiscale, a Hadoop-
as-a-service company, where he helps customers with Hadoop application
design and architecture. He has been involved with Hadoop in general and
Oozie in particular since 2008.

Mohammad Kamrul Islam &
Aravind Srinivasan

Apache
 Oozie
THE WORKFLOW SCHEDULER FOR HADOOP

A
pache O

ozie
Islam

 & Srinivasan

DATA

Apache Oozie

ISBN: 978-1-449-36992-7

US $39.99 CAN $45.99

“ In this book, the
authors have striven for
practicality, focusing on
the concepts, principles,
tips, and tricks that
developers need to get
the most out of Oozie.
A volume such as this is
long overdue. Developers
will get a lot more out of
the Hadoop ecosystem
by reading it.”

—Raymie Stata
CEO, Altiscale

“ Oozie simplifies
the managing and
automating of complex
Hadoop workloads.
This greatly benefits
both developers and
operators alike.”

—Alejandro Abdelnur
Creator of Apache Oozie

Twitter: @oreillymedia
facebook.com/oreilly

Get a solid grounding in Apache Oozie, the workflow scheduler system for
managing Hadoop jobs. In this hands-on guide, two experienced Hadoop
practitioners walk you through the intricacies of this powerful and flexible
platform, with numerous examples and real-world use cases.

Once you set up your Oozie server, you’ll dive into techniques for writing
and coordinating workflows, and learn how to write complex data pipelines.
Advanced topics show you how to handle shared libraries in Oozie, as well
as how to implement and manage Oozie’s security capabilities.

 ■ Install and configure an Oozie server, and get an overview of
basic concepts

 ■ Journey through the world of writing and configuring
workflows

 ■ Learn how the Oozie coordinator schedules and executes
workflows based on triggers

 ■ Understand how Oozie manages data dependencies
 ■ Use Oozie bundles to package several coordinator apps into

a data pipeline
 ■ Learn about security features and shared library management
 ■ Implement custom extensions and write your own EL functions

and actions
 ■ Debug workflows and manage Oozie’s operational details

Mohammad Kamrul Islam works as a Staff Software Engineer in the data
engineering team at Uber. He’s been involved with the Hadoop ecosystem
since 2009, and is a PMC member and a respected voice in the Oozie com-
munity. He has worked in the Hadoop teams at LinkedIn and Yahoo.

Aravind Srinivasan is a Lead Application Architect at Altiscale, a Hadoop-
as-a-service company, where he helps customers with Hadoop application
design and architecture. He has been involved with Hadoop in general and
Oozie in particular since 2008.

Mohammad Kamrul Islam &
Aravind Srinivasan

Apache
 Oozie
THE WORKFLOW SCHEDULER FOR HADOOP

A
pache O

ozie
Islam

 & Srinivasan

Mohammad Kamrul Islam & Aravind Srinivasan

Apache Oozie

978-1-449-36992-7

[LSI]

Apache Oozie
by Mohammad Kamrul Islam and Aravind Srinivasan

Copyright © 2015 Mohammad Islam and Aravindakshan Srinivasan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Marie Beaugureau
Production Editor: Colleen Lobner
Copyeditor: Gillian McGarvey
Proofreader: Jasmine Kwityn

Indexer: Lucie Haskins
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

May 2015: First Edition

Revision History for the First Edition
2015-05-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449369927 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Apache Oozie, the cover image of a
binturong, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449369927

Table of Contents

Foreword. ix

Preface. xi

1. Introduction to Oozie. 1
Big Data Processing 1

A Recurrent Problem 1
A Common Solution: Oozie 2
A Simple Oozie Job 4
Oozie Releases 10
Some Oozie Usage Numbers 12

2. Oozie Concepts. 13
Oozie Applications 13

Oozie Workflows 13
Oozie Coordinators 15
Oozie Bundles 18

Parameters, Variables, and Functions 19
Application Deployment Model 20
Oozie Architecture 21

3. Setting Up Oozie. 23
Oozie Deployment 23
Basic Installations 24

Requirements 24
Build Oozie 25
Install Oozie Server 26
Hadoop Cluster 28

iii

Start and Verify the Oozie Server 29
Advanced Oozie Installations 31

Configuring Kerberos Security 31
DB Setup 32
Shared Library Installation 34
Oozie Client Installations 36

4. Oozie Workflow Actions. 39
Workflow 39
Actions 40

Action Execution Model 40
Action Definition 42

Action Types 43
MapReduce Action 43
Java Action 52
Pig Action 56
FS Action 59
Sub-Workflow Action 61
Hive Action 62
DistCp Action 64
Email Action 66
Shell Action 67
SSH Action 70
Sqoop Action 71

Synchronous Versus Asynchronous Actions 73

5. Workflow Applications. 75
Outline of a Basic Workflow 75
Control Nodes 76

<start> and <end> 77
<fork> and <join> 77
<decision> 79
<kill> 81
<OK> and <ERROR> 82

Job Configuration 83
Global Configuration 83
Job XML 84
Inline Configuration 85
Launcher Configuration 85

Parameterization 86
EL Variables 87
EL Functions 88

iv | Table of Contents

EL Expressions 89
The job.properties File 89

Command-Line Option 91
The config-default.xml File 91
The <parameters> Section 92

Configuration and Parameterization Examples 93
Lifecycle of a Workflow 94

Action States 96

6. Oozie Coordinator. 99
Coordinator Concept 99
Triggering Mechanism 100

Time Trigger 100
Data Availability Trigger 100

Coordinator Application and Job 101
Coordinator Action 101
Our First Coordinator Job 101
Coordinator Submission 103
Oozie Web Interface for Coordinator Jobs 106

Coordinator Job Lifecycle 108
Coordinator Action Lifecycle 109
Parameterization of the Coordinator 110

EL Functions for Frequency 110
Day-Based Frequency 110
Month-Based Frequency 111

Execution Controls 112
An Improved Coordinator 113

7. Data Trigger Coordinator. 117
Expressing Data Dependency 117

Dataset 117
Example: Rollup 122
Parameterization of Dataset Instances 124

current(n) 125
latest(n) 128

Parameter Passing to Workflow 132
dataIn(eventName): 132
dataOut(eventName) 133
nominalTime() 133
actualTime() 133
dateOffset(baseTimeStamp, skipInstance, timeUnit) 134
formatTime(timeStamp, formatString) 134

Table of Contents | v

A Complete Coordinator Application 134

8. Oozie Bundles. 137
Bundle Basics 137

Bundle Definition 137
Why Do We Need Bundles? 138

Bundle Specification 140
Execution Controls 141

Bundle State Transitions 145

9. Advanced Topics. 147
Managing Libraries in Oozie 147

Origin of JARs in Oozie 147
Design Challenges 148
Managing Action JARs 149
Supporting the User’s JAR 152
JAR Precedence in classpath 153

Oozie Security 154
Oozie Security Overview 154
Oozie to Hadoop 155
Oozie Client to Server 158
Supporting Custom Credentials 162

Supporting New API in MapReduce Action 165
Supporting Uber JAR 167
Cron Scheduling 168

A Simple Cron-Based Coordinator 168
Oozie Cron Specification 169

Emulate Asynchronous Data Processing 172
HCatalog-Based Data Dependency 174

10. Developer Topics. 177
Developing Custom EL Functions 177

Requirements for a New EL Function 177
Implementing a New EL Function 178

Supporting Custom Action Types 180
Creating a Custom Synchronous Action 181

Overriding an Asynchronous Action Type 188
Implementing the New ActionMain Class 188
Testing the New Main Class 191

Creating a New Asynchronous Action 193
Writing an Asynchronous Action Executor 193
Writing the ActionMain Class 195

vi | Table of Contents

Writing Action’s Schema 199
Deploying the New Action Type 200
Using the New Action Type 201

11. Oozie Operations. 203
Oozie CLI Tool 203

CLI Subcommands 204
Useful CLI Commands 205

Oozie REST API 210
Oozie Java Client 214
The oozie-site.xml File 215
The Oozie Purge Service 218
Job Monitoring 219

JMS-Based Monitoring 220
Oozie Instrumentation and Metrics 221
Reprocessing 222

Workflow Reprocessing 222
Coordinator Reprocessing 224
Bundle Reprocessing 224

Server Tuning 225
JVM Tuning 225
Service Settings 226

Oozie High Availability 229
Debugging in Oozie 231

Oozie Logs 235
Developing and Testing Oozie Applications 235
Application Deployment Tips 236
Common Errors and Debugging 237

MiniOozie and LocalOozie 240
The Competition 241

Index. 243

Table of Contents | vii

Foreword

First developed when I was at Yahoo! in 2008, Apache Oozie remains the most
sophisticated and powerful workflow scheduler for managing Apache Hadoop jobs.
Although simpler open source alternatives have been introduced, Oozie is still my
recommended workflow scheduler due to its ability to handle complexity, ease of
integration with established and emerging Hadoop components (like Spark), and the
growing ecosystem of projects, such as Apache Falcon, that rely on its workflow
engine.

That said, Oozie also remains one of the more challenging schedulers to learn and
master. If ever a system required a comprehensive user’s manual, Oozie is it. To take
advantage of the full power that Oozie has to offer, developers need the guidance and
advice of expert users. That is why I am delighted to see this book get published.

When Oozie was first developed, I was Chief Architect of Yahoo!’s Search and Adver‐
tising Technology Group. At the time, our group was starting to migrate the event-
processing pipelines of our advertising products from a proprietary technology stack
to Apache Hadoop.

The advertising pipelines at Yahoo! were extremely complex. Data was processed in
batches that ranged from 5 minutes to 30 days in length, with aggregates “graduating”
in complex ways from one time scale to another. In addition, these pipelines needed
to detect and gracefully handle late data, missing data, software bugs tickled by “black
swan” event data, and software bugs introduced by recent software pushes. On top of
all of that, billions of dollars of revenue—and a good deal of the company’s growth
prospects—depended on these pipelines, raising the stakes for data quality, security,
and compliance. We had about a half-dozen workflow systems in use back then, and
there was a lot of internal competition to be selected as the standard for Hadoop.
Ultimately, the design for Oozie came from ideas from two systems: PacMan, a sys‐
tem already integrated with Hadoop, and Lexus, a system already in place for the
advertising pipelines.

ix

Oozie’s origins as a second-generation system designed to meet the needs of
extremely complicated applications are both a strength and a weakness. On the posi‐
tive side, there is no use case or scenario that Oozie can’t handle—and if you know
what you’re doing, handle well. On the negative side, Oozie suffers from the over-
engineering that you’d expect from second-system effect. It has complex features that
are great for handling complicated applications, but can be very nonintuitive for
inexperienced users. For these newer users, I want to let you know that Oozie is
worth the investment of your time. While the newer, simpler workflow schedulers are
much easier for simple pipelines, it is in the nature of data pipelines to grow more
sophisticated over time. The simpler solutions will ultimately limit the solutions that
you can create. Don’t limit yourself.

As guides to Oozie, there can be no better experts than Aravind Srinivasan and
Mohammad Kamrul Islam. Aravind represents the “voice of the user,” as he was one
of the engineers who moved Yahoo!’s advertising pipelines over to Oozie, bringing
the lessons of Lexus to the Oozie developers. Subsequently, he has worked on many
other Oozie applications, both inside and outside of Yahoo!. Mohammad represents
the “voice of the developer,” as a core contributor to Oozie since its 1.x days. Moham‐
mad is currently Vice President of the Oozie project at the Apache Software Founda‐
tion, and he also makes significant contributions to other Hadoop-related projects
such as YARN and Tez.

In this book, the authors have striven for practicality, focusing on the concepts, prin‐
ciples, tips, and tricks necessary for developers to get the most out of Oozie. A vol‐
ume such as this is long overdue. Developers will get a lot more out the Hadoop
ecosystem by reading it.

—Raymie Stata, CEO, Altiscale

x | Foreword

Preface

Hadoop is fast becoming the de facto big data platform across all industries. An entire
ecosystem of tools, products, and services targeting every functionality and require‐
ment have sprung up around Hadoop. Apache Oozie occupies an important space in
this ever-expanding ecosystem. Since Hadoop’s early days at Yahoo!, it has been a nat‐
ural platform for Extract, Transform, and Load (ETL) and other forms of data pipe‐
lines. Without a mature workflow management and scheduling system,
implementing such pipelines can be a challenge. Oozie satisfies these requirements
and provides a viable tool to implement complex, real-world data pipelines. In this
book, we have tried our best to introduce readers to all the facets of Oozie and walk
them through the intricacies of this rather powerful and flexible platform.

Software workflow systems are ubiquitous and each system has its own idiosyn‐
crasies. But Oozie is a lot more than just another workflow system. One of Oozie’s
strengths is that it was custom built from the ground up for Hadoop. This not only
means that Oozie works well on Hadoop, but that the authors of Oozie had an oppor‐
tunity to build a new system incorporating much of their knowledge about other leg‐
acy workflow systems. Although some users view Oozie as just a workflow system, it
has evolved into something more than that. The ability to use data availability and
time-based triggers to schedule workflows via the Oozie coordinator is as important
to today’s users as the workflow. The higher-level concept of bundles, which enable
users to package multiple coordinators into complex data pipelines, is also gaining a
lot of traction as applications and pipelines moving to Hadoop are getting more
complicated.

We are both very lucky to have been involved in Oozie’s journey from its early days.
We have played several roles in its evolution, ranging from developer, architect, open
source committer, Project Management Committee (PMC) member, product man‐
ager, and even demanding customer. We have tried to leverage all of that perspective
to present a comprehensive view of Oozie in this book. We strongly believe in the
vision of Oozie and its potential to make Hadoop a more powerful platform.
Hadoop’s use is expanding and we notice that users want to use it in smarter and

xi

more interesting ways. We have seen many projects in the past getting bogged down
with writing, operating, and debugging the workflow system meant to manage the
business application. By delegating all of the workflow and scheduling complexities to
Oozie, you can focus on developing your core business application.

This book attempts to explain all the technical details of Oozie and its various fea‐
tures with specific, real-world examples. The target audience for this book is Oozie
users and administrators at all levels of expertise. Our only requirement for the reader
is a working knowledge of Hadoop and the ecosystem tools. We are also very aware of
the challenges of operating a Hadoop cluster in general and Oozie in particular, and
have tried our best to cover operational issues and debugging techniques in depth.
Last but not the least, Oozie is designed to be very flexible and extensible and we
want to encourage users to get comfortable with the idea of becoming an Oozie
developer if they so desire. We would love to grow the Oozie community and con‐
tinue the innovation in this part of the Hadoop ecosystem. While it would be nice to
achieve all of these goals with this book, the most fundamental hope is that readers
find it helpful in using Oozie and Hadoop more effectively every day in their jobs.

Contents of This Book
We start the book off with a brief introduction to Oozie in Chapter 1 and an overview
of the important concepts in Chapter 2. Chapter 3 gets your hands dirty right away
with detailed instructions on installing and configuring Oozie. We want this book to
be a hands-on experience for our readers, so deployment must be mastered early.

Oozie is primarily a workflow system in most users’ worlds. Chapters 4 and 5 take
you on an in-depth journey through the world of writing and configuring workflows.
These chapters also explain parameterization and variable substitution in detail. This
will establish a very good basis for the rest of the book, as the other major Oozie fea‐
tures are built on top of the workflow system.

Chapter 6 covers the concepts of the coordinator and helps you to start writing coor‐
dinator apps. We then look at the data dependency mechanism in Chapter 7. Data
triggers are a powerful and distinguishing feature of Oozie and this chapter explains
all the intricacies of managing data dependencies.

Bundles are the higher-level pipeline abstraction and Chapter 8 delves deep into the
world of bundles with specific examples and use cases to clarify some of the advanced
concepts. It also introduces concepts and challenges like reprocessing, which produc‐
tion pipelines routinely deal with.

In Chapter 9, we cover the powerful security features in Oozie, including Kerberos
support and impersonation. This chapter also explains the management of shared
libraries in Oozie and cron-based scheduling, which comes in handy for a certain
class of use cases.

xii | Preface

We cover the developer aspects regarding extending Oozie in Chapter 10. Readers
can learn how to implement custom extensions to their Oozie systems. It teaches
them how to write their own Expression Language (EL) functions and custom
actions.

Last, but not the least, we realize that debugging Oozie workflows and managing the
operational details of Oozie are an important part of mastering Oozie. Thus, Chap‐
ter 11 focuses exclusively on these topics. We start by explaining the command-line
interface (CLI) tool and the REST API and then discuss monitoring and debugging.
We also cover the purge service, reprocessing, and other operational aspects in this
chapter.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
The source code for all the examples in the book is available on GitHub.

Preface | xiii

https://github.com/oozie-book/examples

This book is here to help you get your job done. In general, you may use the code in
your programs and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permis‐
sion. Selling or distributing a CD-ROM of examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Apache Oozie by Mohammad Kam‐
rul Islam and Aravind Srinivasan (O’Reilly). Copyright 2015 Mohammad Islam and
Aravindakshan Srinivasan, 978-1-449-36992-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in tech‐
nology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and dozens more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/apache-oozie.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
As the saying goes, it takes a village to raise a child. After working on this book, we
now realize it takes an even bigger crowd to finish a book! We would like to take this
opportunity to thank everybody who helped us with this book. There are a lot of peo‐
ple we would like to thank and we apologize if we have missed a name or two (it’s
certainly not our intention to forget anybody here). We will start with our family and
personal friends because without their understanding, support, encouragement, and
patience, this book would not have been possible.

At the top of our list is Robert Kanter from Cloudera. We thank him for his unwaver‐
ing support. His in-depth knowledge and contributions to the Oozie code base and
the community were a major source of information for us both directly and indi‐
rectly. He was our “go to” reviewer and sounding board throughout the process. We
are very thankful for his incredible attention to detail and for his commitment to this
project. We are convinced that without Robert’s involvement, this book would have
been a lesser product.

A sincere vote of thanks goes out to Mona Chitnis and Virag Kothari from Yahoo! for
all the detailed review comments and also for being there to answer any and all of our
questions about various areas of the Oozie code. In addition, we also received a lot of
comments and suggestions from a few other key reviewers. Their extensive and
insightful thoughts definitely enhanced both the technical depth and the readability
of this book. Hien Luu (LinkedIn), Jakob Homan (Microsoft), Denis Sheahan (Face‐
book), and William Kang (LinkedIn) deserve special mention in this regard. Special
thanks to Raymie Stata (Altiscale) for his encouragement and support for this book.

Preface | xv

http://bit.ly/apache-oozie
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

We also thank David Chaiken (Altiscale), Barbara Lewis (Altiscale), and Ann
McCown (Altiscale) for their support.

We would also like to thank Sumeet Singh from Yahoo!, who initially encouraged us
to write a book on Oozie and Santhosh Srinivasan from Cloudera for helping the two
of us come together to work on this book. Santhosh has spent some time in the past
as a manager of Yahoo!’s Oozie team and his perspective and understanding of this
area was a major help to us.

None of this would have been possible without Alejandro Abdelnur, the cocreator of
Oozie. Alejandro was personally involved with the contents of the early chapters and
without his involvement, this project would have been a much harder endeavor. We
sincerely thank him for his direct and indirect help and for serving as a sounding
board and inspiration for us.

Finally, we thank all the O’Reilly folks for their support and resources. There are too
many to thank individually, but they are the true owners of this project and deserve
all the credit for making this happen. They were there every step of the way and hel‐
ped us realize the vision of a book on Oozie.

xvi | Preface

1 Tom White, Hadoop: The Definitive Guide, 4th Edition (Sebastopol, CA: O’Reilly 2015).
2 Olga Natkovich, "Pig - The Road to an Efficient High-level language for Hadoop,” Yahoo! Developer Network

Blog, October 28, 2008.

CHAPTER 1

Introduction to Oozie

In this chapter, we cover some of the background and motivations that led to the cre‐
ation of Oozie, explaining the challenges developers faced as they started building
complex applications running on Hadoop.1 We also introduce you to a simple Oozie
application. The chapter wraps up by covering the different Oozie releases, their main
features, their timeline, compatibility considerations, and some interesting statistics
from large Oozie deployments.

Big Data Processing
Within a very short period of time, Apache Hadoop, an open source implementation
of Google’s MapReduce paper and Google File System, has become the de facto plat‐
form for processing and storing big data.

Higher-level domain-specific languages (DSL) implemented on top of Hadoop’s Map‐
Reduce, such as Pig2 and Hive, quickly followed, making it simpler to write applica‐
tions running on Hadoop.

A Recurrent Problem
Hadoop, Pig, Hive, and many other projects provide the foundation for storing and
processing large amounts of data in an efficient way. Most of the time, it is not possi‐
ble to perform all required processing with a single MapReduce, Pig, or Hive job.

1

http://bit.ly/hadoop_tdg_4e
http://bit.ly/oozie-pig
http://oozie.apache.org
http://bit.ly/oozie-g-mapreduce
http://bit.ly/oozie-gfs
http://pig.apache.org
http://hive.apache.org

Multiple MapReduce, Pig, or Hive jobs often need to be chained together, producing
and consuming intermediate data and coordinating their flow of execution.

Throughout the book, when referring to a MapReduce, Pig, Hive,
or any other type of job that runs one or more MapReduce jobs on
a Hadoop cluster, we refer to it as a Hadoop job. We mention the
job type explicitly only when there is a need to refer to a particular
type of job.

At Yahoo!, as developers started doing more complex processing using Hadoop,
multistage Hadoop jobs became common. This led to several ad hoc solutions to
manage the execution and interdependency of these multiple Hadoop jobs. Some
developers wrote simple shell scripts to start one Hadoop job after the other. Others
used Hadoop’s JobControl class, which executes multiple MapReduce jobs using
topological sorting. One development team resorted to Ant with a custom Ant task to
specify their MapReduce and Pig jobs as dependencies of each other—also a topologi‐
cal sorting mechanism. Another team implemented a server-based solution that ran
multiple Hadoop jobs using one thread to execute each job.

As these solutions started to be widely used, several issues emerged. It was hard to
track errors and it was difficult to recover from failures. It was not easy to monitor
progress. It complicated the life of administrators, who not only had to monitor the
health of the cluster but also of different systems running multistage jobs from client
machines. Developers moved from one project to another and they had to learn the
specifics of the custom framework used by the project they were joining. Different
organizations within Yahoo! were using significant resources to develop and support
multiple frameworks for accomplishing basically the same task.

A Common Solution: Oozie
It was clear that there was a need for a general-purpose system to run multistage
Hadoop jobs with the following requirements:

• It should use an adequate and well-understood programming model to facilitate
its adoption and to reduce developer ramp-up time.

• It should be easy to troubleshot and recover jobs when something goes wrong.
• It should be extensible to support new types of jobs.
• It should scale to support several thousand concurrent jobs.
• Jobs should run in a server to increase reliability.
• It should be a multitenant service to reduce the cost of operation.

2 | Chapter 1: Introduction to Oozie

http://bit.ly/oozie-jobcontrol
http://bit.ly/oozie-top-def
http://ant.apache.org

Toward the end of 2008, Alejandro Abdelnur and a few engineers from Yahoo! Ban‐
galore took over a conference room with the goal of implementing such a system.
Within a month, the first functional version of Oozie was running. It was able to run
multistage jobs consisting of MapReduce, Pig, and SSH jobs. This team successfully
leveraged the experience gained from developing PacMan, which was one of the ad
hoc systems developed for running multistage Hadoop jobs to process large amounts
of data feeds.

Yahoo! open sourced Oozie in 2010. In 2011, Oozie was submitted to the Apache
Incubator. A year later, Oozie became a top-level project, Apache Oozie.

Oozie’s role in the Hadoop Ecosystem
In this section, we briefly discuss where Oozie fits in the larger Hadoop ecosystem.
Figure 1-1 captures a high-level view of Oozie’s place in the ecosystem. Oozie can
drive the core Hadoop components—namely, MapReduce jobs and Hadoop Dis‐
tributed File System (HDFS) operations. In addition, Oozie can orchestrate most of
the common higher-level tools such as Pig, Hive, Sqoop, and DistCp. More impor‐
tantly, Oozie can be extended to support any custom Hadoop job written in any lan‐
guage. Although Oozie is primarily designed to handle Hadoop components, Oozie
can also manage the execution of any other non-Hadoop job like a Java class, or a
shell script.

Figure 1-1. Oozie in the Hadoop ecosystem

What exactly is Oozie?
Oozie is an orchestration system for Hadoop jobs. Oozie is designed to run multi‐
stage Hadoop jobs as a single job: an Oozie job. Oozie jobs can be configured to run
on demand or periodically. Oozie jobs running on demand are called workflow jobs.
Oozie jobs running periodically are called coordinator jobs. There is also a third type
of Oozie job called bundle jobs. A bundle job is a collection of coordinator jobs man‐
aged as a single job.

Big Data Processing | 3

http://oozie.apache.org
http://bit.ly/oozie-orch

The name “Oozie”
Alejandro and the engineers were looking for a name that would convey what the sys‐
tem does—managing Hadoop jobs. Something along the lines of an elephant keeper
sounded ideal given that Hadoop was named after a stuffed toy elephant. Alejandro
was in India at that time, and it seemed appropriate to use the Hindi name for ele‐
phant keeper, mahout. But the name was already taken by the Apache Mahout
project. After more searching, oozie (the Burmese word for elephant keeper) popped
up and it stuck.

A Simple Oozie Job
To get started with writing an Oozie application and running an Oozie job, we’ll cre‐
ate an Oozie workflow application named identity-WF that runs an identity MapRe‐
duce job. The identity MapReduce job just echoes its input as output and does
nothing else. Hadoop bundles the IdentityMapper class and IdentityReducer class,
so we can use those classes for the example.

The source code for all the examples in the book is available on
GitHub.
For details on how to build the examples, refer to the README.txt
file in the GitHub repository.
Refer to “Oozie Applications” on page 13 for a quick definition of
the terms Oozie application and Oozie job.

In this example, after starting the identity-WF workflow, Oozie runs a MapReduce
job called identity-MR. If the MapReduce job completes successfully, the workflow
job ends normally. If the MapReduce job fails to execute correctly, Oozie kills the
workflow. Figure 1-2 captures this workflow.

Figure 1-2. identity-WF Oozie workflow example

4 | Chapter 1: Introduction to Oozie

http://mahout.apache.org
http://mahout.apache.org
https://github.com/oozie-book/examples
https://github.com/oozie-book/examples

The example Oozie application is built from the examples/chapter-01/identity-wf/
directory using the Maven command:

$ cd examples/chapter-01/identity-wf/
$ mvn package assembly:single
...
[INFO] BUILD SUCCESS
...

The identity-WF Oozie workflow application consists of a single file, the work‐
flow.xml file. The Map and Reduce classes are already available in Hadoop’s classpath
and we don’t need to include them in the Oozie workflow application package.

The workflow.xml file in Example 1-1 contains the workflow definition of the applica‐
tion, an XML representation of Figure 1-2 together with additional information such
as the input and output directories for the MapReduce job.

A common question people starting with Oozie ask is Why was
XML chosen to write Oozie applications? By using XML, Oozie
application developers can use any XML editor tool to author their
Oozie application. The Oozie server uses XML libraries to parse
and validate the correctness of an Oozie application before
attempting to use it, significantly simplifying the logic that pro‐
cesses the Oozie application definition. The same holds true for
systems creating Oozie applications on the fly.

Example 1-1. identity-WF Oozie workflow XML (workflow.xml)

<workflow-app xmlns="uri:oozie:workflow:0.4" name="identity-WF">

 <start to="identity-MR"/>

 <action name="identity-MR">
 <map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <prepare>
 <delete path="${exampleDir}/data/output"/>
 </prepare>
 <configuration>
 <property>
 <name>mapred.mapper.class</name>
 <value>org.apache.hadoop.mapred.lib.IdentityMapper</value>
 </property>
 <property>
 <name>mapred.reducer.class</name>
 <value>org.apache.hadoop.mapred.lib.IdentityReducer</value>
 </property>
 <property>
 <name>mapred.input.dir</name>

Big Data Processing | 5

http://maven.apache.org

 <value>${exampleDir}/data/input</value>
 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>${exampleDir}/data/output</value>
 </property>
 </configuration>
 </map-reduce>
 <ok to="success"/>
 <error to="fail"/>
 </action>

 <kill name="fail">
 <message>The Identity Map-Reduce job failed!</message>
 </kill>

 <end name="success"/>

</workflow-app>

The workflow application shown in Example 1-1 expects three parameters:
jobTracker, nameNode, and exampleDir. At runtime, these variables will be replaced
with the actual values of these parameters.

In Hadoop 1.0, JobTracker (JT) is the service that manages Map‐
Reduce jobs. This execution framework has been overhauled in
Hadoop 2.0, or YARN; the details of YARN are beyond the scope of
this book. You can think of the YARN ResourceManager (RM) as
the new JT, though the RM is vastly different from JT in many
ways. So the <job-tracker> element in Oozie can be used to pass
in either the JT or the RM, even though it is still called as the <job-
tracker>. In this book, we will use this parameter to refer to either
the JT or the RM depending on the version of Hadoop in play.

When running the workflow job, Oozie begins with the start node and follows the
specified transition to identity-MR. The identity-MR node is a <map-reduce>
action. The <map-reduce> action indicates where the MapReduce job should run via
the job-tracker and name-node elements (which define the URI of the JobTracker
and the NameNode, respectively). The prepare element is used to delete the output
directory that will be created by the MapReduce job. If we don’t delete the output
directory and try to run the workflow job more than once, the MapReduce job will
fail because the output directory already exists. The configuration section defines
the Mapper class, the Reducer class, the input directory, and the output directory for
the MapReduce job. If the MapReduce job completes successfully, Oozie follows the
transition defined in the ok element named success. If the MapReduce job fails,
Oozie follows the transition specified in the error element named fail. The success

6 | Chapter 1: Introduction to Oozie

http://bit.ly/oozie-yarn

transition takes the job to the end node, completing the Oozie job successfully. The
fail transition takes the job to the kill node, killing the Oozie job.

The example application consists of a single file, workflow.xml. We need to package
and deploy the application on HDFS before we can run a job. The Oozie application
package is stored in a directory containing all the files for the application. The work‐
flow.xml file must be located in the application root directory:

app/
 |
 |-- workflow.xml

We first need to create the workflow application package in our local filesystem.
Then, to deploy it, we must copy the workflow application package directory to
HDFS. Here’s how to do it:

$ hdfs dfs -put target/example/ch01-identity ch01-identity
$ hdfs dfs -ls -R ch01-identity

/user/joe/ch01-identity/app
/user/joe/ch01-identity/app/workflow.xml
/user/joe/ch01-identity/data
/user/joe/ch01-identity/data/input
/user/joe/ch01-identity/data/input/input.txt

To access HDFS from the command line in newer Hadoop ver‐
sions, the hdfs dfs commands are used. Longtime users of
Hadoop may be familiar with the hadoop fs commands. Either
interface will work today, but users are encouraged to move to the
hdfs dfs commands.

The Oozie workflow application is now deployed in the ch01-identity/app/ directory
under the user’s HDFS home directory. We have also copied the necessary input data
required to run the Oozie job to the ch01-identity/data/input directory.

Before we can run the Oozie job, we need a job.properties file in our local filesystem
that specifies the required parameters for the job and the location of the application
package in HDFS:

nameNode=hdfs://localhost:8020
jobTracker=localhost:8032
exampleDir=${nameNode}/user/${user.name}/ch01-identity
oozie.wf.application.path=${exampleDir}/app

The parameters needed for this example are jobTracker, nameNode, and exampleDir.
The oozie.wf.application.path indicates the location of the application package in
HDFS.

Big Data Processing | 7

Users should be careful with the JobTracker and NameNode URI,
especially the port numbers. These are cluster-specific Hadoop
configurations. A common problem we see with new users is that
their Oozie job submission will fail after waiting for a long time.
One possible reason for this is incorrect port specification for the
JobTracker. Users need to find the correct JobTracker RPC port
from the administrator or Hadoop site XML file. Users often get
this port and the JobTracker UI port mixed up.

We are now ready to submit the job to Oozie. We will use the oozie command-line
tool for this:

$ export OOZIE_URL=http://localhost:11000/oozie
$ oozie job -run -config target/example/job.properties
job: 0000006-130606115200591-oozie-joe-W

We will cover Oozie’s command-line tool and its different parameters in detail later in
“Oozie CLI Tool” on page 203. For now, we just need to know that we can run an
Oozie job using the -run option. And using the -config option, we can specify the
location of the job.properties file.

We can also monitor the progress of the job using the oozie command-line tool:
$ oozie job -info 0000006-130606115200591-oozie-joe-W
Job ID : 0000006-130606115200591-oozie-joe-W

Workflow Name : identity-WF
App Path : hdfs://localhost:8020/user/joe/ch01-identity/app
Status : RUNNING
Run : 0
User : joe
Group : -
Created : 2013-06-06 20:35 GMT
Started : 2013-06-06 20:35 GMT
Last Modified : 2013-06-06 20:35 GMT
Ended : -
CoordAction ID: -

Actions

ID Status

0000006-130606115200591-oozie-joe-W@:start: OK

0000006-130606115200591-oozie-joe-W@identity-MR RUNNING

When the job completes, the oozie command-line tool reports the completion state:
$ oozie job -info 0000006-130606115200591-oozie-joe-W
Job ID : 0000006-130606115200591-oozie-joe-W

8 | Chapter 1: Introduction to Oozie

Workflow Name : identity-WF
App Path : hdfs://localhost:8020/user/joe/ch01-identity/app
Status : SUCCEEDED
Run : 0
User : joe
Group : -
Created : 2013-06-06 20:35 GMT
Started : 2013-06-06 20:35 GMT
Last Modified : 2013-06-06 20:35 GMT
Ended : 2013-06-06 20:35 GMT
CoordAction ID: -

Actions

ID Status

0000006-130606115200591-oozie-joe-W@:start: OK

0000006-130606115200591-oozie-joe-W@identity-MR OK

0000006-130606115200591-oozie-joe-W@success OK

The output of our first Oozie workflow job can be found in the ch01-identity/data/
output directory under the user’s HDFS home directory:

$ hdfs dfs -ls -R ch01-identity/data/output

/user/joe/ch01-identity/data/output/_SUCCESS
/user/joe/ch01-identity/data/output/part-00000

The output of this Oozie job is the output of the MapReduce job run by the workflow
job. We can also see the job status and detailed job information on the Oozie web
interface, as shown in Figure 1-3.

Big Data Processing | 9

Figure 1-3. Oozie workflow job on the Oozie web interface

This section has illustrated the full lifecycle of a simple Oozie workflow application
and the typical ways to monitor it.

Oozie Releases
Oozie has gone through four major releases so far. The salient features of each of
these major releases are listed here:

1.x
Support for workflow jobs

2.x
Support for coordinator jobs

3.x
Support for bundle jobs

4.x
Hive/HCatalog integration, Oozie server high availability, and support for
service-level agreement (SLA) notifications

Several other features, bug fixes, and improvements have also been released as part of
the various major, minor, and micro releases. Support for additional types of Hadoop
and non-Hadoop jobs (SSH, Hive, Sqoop, DistCp, Java, Shell, email), support for dif‐
ferent database vendors for the Oozie database (Derby, MySQL, PostgreSQL, Oracle),
and scalability improvements are some of the more interesting enhancements and
updates that have made it to the product over the years.

10 | Chapter 1: Introduction to Oozie

http://bit.ly/oozie-hcatalog
http://bit.ly/oozie-sla-def

3 Roy Thomas Fielding, "REST: Representational State Transfer" (PhD dissertation, University of California,
Irvine, 2000)

Timeline and status of the releases
The 1.x release series was developed by Yahoo! internally. There were two open
source code drops on GitHub in May 2010 (versions 1.5.6 and 1.6.2).

The 2.x release series was developed in Yahoo!’s Oozie repository on GitHub. There
are nine releases of the 2.x series, the last one being 2.3.2 in August 2011.

The 3.x release series had eight releases. The first three were developed in Yahoo!’s
Oozie repository on GitHub and the rest in Apache Oozie, the last one being 3.3.2 in
March 2013.

4.x is the newest series and the latest version (4.1.0) was released in December 2014.

The 1.x and 2.x series are are no longer under development, the 3.x series is under
maintenance development, and the 4.x series is under active development.

The 3.x release series is considered stable.

Current and previous releases are available for download from Apache Oozie, as well
as a part of Cloudera, Hortonworks, and MapR Hadoop distributions.

Compatibility
Oozie has done a very good job of preserving backward compatibility between relea‐
ses. Upgrading from one Oozie version to a newer one is a simple process and should
not affect existing Oozie applications or the integration of other systems with Oozie.

As we discussed in “A Simple Oozie Job” on page 4, Oozie applications must be writ‐
ten in XML. It is common for Oozie releases to introduce changes and enhancements
to the XML syntax used to write applications. Even when this happens, newer Oozie
versions always support the XML syntax of older versions. However, the reverse is not
true, and the Oozie server will reject jobs of applications written against a later ver‐
sion.

As for the Oozie server, depending on the scope of the upgrade, the Oozie adminis‐
trator might need to suspend all jobs or let all running jobs complete before upgrad‐
ing. The administrator might also need to use an upgrade tool or modify some of the
configuration settings of the Oozie server.

The oozie command-line tool, Oozie client Java API, and the Oozie HTTP REST API
have all evolved maintaining backward compatibility with previous releases.3

Big Data Processing | 11

http://bit.ly/REST-fielding
https://github.com/yahoo/oozie
http://oozie.apache.org/
http://www.cloudera.com
http://www.hortonworks.com
http://www.mapr.com
http://bit.ly/oozie-backward-def

Some Oozie Usage Numbers
Oozie is widely used in several large production clusters across major enterprises to
schedule Hadoop jobs. For instance, Yahoo! is a major user of Oozie and it periodi‐
cally discloses usage statistics. In this section, we present some of these numbers just
to give readers an idea about Oozie’s scalability and stability.

Yahoo! has one of the largest deployments of Hadoop, with more than 40,000 nodes
across several clusters. Oozie is the primary workflow engine for Hadoop clusters at
Yahoo! and is responsible for launching almost 72% of 28.9 million monthly Hadoop
jobs as of January 2015. The largest Hadoop cluster processes 60 bundles and 1,600
coordinators, amounting to 80,000 daily workflows with 3 million workflow nodes.
About 25% of the coordinators execute at frequencies of either 5, 10, or 15 minutes.
The remaining 75% of the coordinator jobs are mostly hourly or daily jobs with some
weekly and monthly jobs. Yahoo’s Oozie team runs and supports several complex
jobs. Interesting examples include a single bundle with 200 coordinators and a work‐
flow with 85 fork/join pairs.

Now that we have covered the basics of Oozie, including the problem it solves and
how it fits into the Hadoop ecosystem, it’s time to learn more about the concepts of
Oozie. We will do that in the next chapter.

12 | Chapter 1: Introduction to Oozie

CHAPTER 2

Oozie Concepts

This chapter covers the basic concepts behind the workflow, coordinator, and bundle
jobs, and how they relate to one another. We present a use case for each one of them.
Throughout the book, we will elaborate on these concepts and provide more detailed
examples. The last section of this chapter explains Oozie’s high-level architecture.

Oozie Applications
In Unix, the /bin/echo file is an executable. When we type /bin/echo Hello in a ter‐
minal session, it starts a process that prints Hello. Oozie applications are analogous
to Unix executables, and Oozie jobs are analogous to Unix processes. Oozie users
develop applications, and one execution of an application is called a job.

Throughout the book, unless explicitly specified, we do not differ‐
entiate between applications and jobs. Instead, we simply call them
a workflow, a coordinator, or a bundle.

Oozie Workflows
An Oozie workflow is a multistage Hadoop job. A workflow is a collection of action
and control nodes arranged in a directed acyclic graph (DAG) that captures control
dependency where each action typically is a Hadoop job (e.g., a MapReduce, Pig,
Hive, Sqoop, or Hadoop DistCp job). There can also be actions that are not Hadoop
jobs (e.g., a Java application, a shell script, or an email notification).

The order of the nodes in the workflow determines the execution order of these
actions. An action does not start until the previous action in the workflow ends.
Control nodes in a workflow are used to manage the execution flow of actions. The

13

http://bit.ly/oozie-dag-def
http://sqoop.apache.org

start and end control nodes define the start and end of a workflow. The fork and join
control nodes allow executing actions in parallel. The decision control node is like a
switch/case statement that can select a particular execution path within the work‐
flow using information from the job itself. Figure 2-1 represents an example work‐
flow.

Figure 2-1. Oozie Workflow

Because workflows are directed acyclic graphs, they don’t support
loops in the flow.

Workflow use case
For this use case, we will consider a site for mobile applications that keeps track of
user interactions collecting the timestamp, username, and geographic location of each
interaction. This information is written to log files. The logs files from all the servers
are collected daily. We would like to process all the logs for a day to obtain the follow‐
ing information:

• ZIP code(s) for each user
• Interactions per user
• User interactions per ZIP code

First, we need to convert geographic locations into ZIP codes. We do this using a
to-ZIP MapReduce job that processes the daily logs. The input data for the job is
(timeStamp, geoLocation, userName). The map phase converts the geographic
location into ZIP code and emits a ZIP and username as key and 1 as value. The
intermediate data of the job is in the form of (ZIP + userName, 1). The reduce
phase adds up and emits all the occurrences of the same ZIP and username key. Each
output record of the job is then (ZIP, userName, interactions).

14 | Chapter 2: Oozie Concepts

Using the (ZIP, userName, interactions) output from the first job, we run two
additional MapReduce jobs, the user-ZIPs job and user-interactions job.

The map phase of the user-ZIPs job emits (userName, ZIP) as intermediate data.
The reduce phase collects all the ZIP codes of a userName in an array and emits
(userName, ZIP[]).

For the user-interactions job, the map phase emits (userName, 1) as intermediate
data. The reduce phase adds up all the occurrences for the same userName and emits
(userName, number-of-interactions).

The to-ZIP job must run first. When it finishes, we can run the user-ZIPs and the
user-interactions MapReduce jobs. Because the user-ZIPs and user-
interactions jobs do not depend on each other, we can run both of them in parallel.

Figure 2-2 represents the daily-logs-workflow just described.

Figure 2-2. The daily-logs-workflow Oozie workflow

Oozie Coordinators
An Oozie coordinator schedules workflow executions based on a start-time and a fre‐
quency parameter, and it starts the workflow when all the necessary input data
becomes available. If the input data is not available, the workflow execution is delayed
until the input data becomes available. A coordinator is defined by a start and end
time, a frequency, input and output data, and a workflow. A coordinator runs period‐
ically from the start time until the end time, as shown in Figure 2-3.

Oozie Applications | 15

Figure 2-3. Lifecycle of an Oozie coordinator

Beginning at the start time, the coordinator job checks if the required input data is
available. When the input data becomes available, a workflow is started to process the
input data, which on completion, produces the corresponding output data. This pro‐
cess is repeated at every tick of the frequency until the end time of the coordinator
job. If the input data is not available for a workflow run, the execution of the work‐
flow job will be delayed until the input data becomes available. Normally, both the
input and output data used for a workflow execution are aligned with the coordinator
time frequency. Figure 2-4 shows multiple workflow jobs run by a coordinator job
based on the frequency.

Figure 2-4. An Oozie coordinator job

It is possible to configure a coordinator to wait for a maximum amount of time for
the input data to become available and timeout if the data doesn’t show up.

16 | Chapter 2: Oozie Concepts

If a coordinator does not define any input data, the coordinator job is a time-based
scheduler, similar to a Unix cron job.

Coordinator use case
Building on the “Workflow use case” on page 14, the daily-logs-workflow needs to
run on a daily basis. It is expected that the logs from the previous day are ready and
available for processing at 2:00 a.m.

To avoid the need for a manual submission of the daily-logs-workflow every day
once the log files are available, we use a coordinator job, the daily-logs-
coordinator job.

To process all the daily logs for the year 2013, the coordinator job must run every day
at 2:00 a.m., starting on January 2, 2013 and ending on January 1, 2014.

The coordinator defines an input data dependency on logs files: rawlogs. It
produces three datasets as output data: zip_userName_interactions,
userName_interactions, and userName_ZIPs. To differentiate the input and output
data that is used and produced every day, the date of the logs is templatized and is
used as part of the input data and output data directory paths. For example, every
day, the logs from the mobile site are copied into a rawlogs/YYYYMMDD/ directory.
Similarly, the output data is created in three different directories: zip_user‐
Name_interactions/YYYYMMDD/, userName_interactions/YYYYMMDD/, and user‐
Name_ZIPs/YYYYMMDD/. For both the input and the output data, YYYYMMDD is
the day of the logs being processed. For example, for May 24, 2013, it is 20130524.

When the daily-logs-coordinator job is running and the daily rawlogs input data
is available at 2:00 a.m. of the next day, the workflow is started immediately. However,
if for any reason the rawlogs input data is not available at 2:00 a.m., the coordinator
job will wait until the input data becomes available to start the workflow that pro‐
cesses the logs. If the daily rawlogs are not available for a few days, the coordinator
job keeps track of all the missed days. And when the rawlogs for a missing day shows
up, the workflow to process the logs for the corresponding date is started. The output
data will have the same date as the date of the input data that has been processed.
Figure 2-5 captures some of these details.

Oozie Applications | 17

http://bit.ly/oozie-cron-def

Figure 2-5. daily-logs-coordinator Oozie coordinator

Oozie Bundles
An Oozie bundle is a collection of coordinator jobs that can be started, stopped, sus‐
pended, and modified as a single job. Typically, coordinator jobs in a bundle depend
on each other. The Output data produced by a coordinator job becomes input data
for other coordinator jobs. These types of interdependent coordinator jobs are also
called data pipelines.

Bundle use case
We will extend the “Coordinator use case” on page 17 to explain the concept of a bun‐
dle. Specifically, let’s assume that in addition to the daily processing, we need to do a
weekly and a monthly aggregation of the daily results.

For this aggregation, we use an aggregator-workflow workflow job that takes three
different inputs for a range of dates: zip_userName_interactions,
userName_interactions, and userName_ZIPs.

The weekly aggregation is done by the weekly-aggregator-coordinator coordinator
job with a frequency of one week that aggregates data from the previous week.

The monthly aggregation is done by the monthly-aggregator-coordinator coordi‐
nator job with a frequency of one month that aggregates data from the previous
month.

18 | Chapter 2: Oozie Concepts

We have three coordinator jobs: daily-logs-coordinator, weekly-aggregator-
coordinator, and monthly-aggregator-coordinator. Note that we are using the
same workflow application to do the reports aggregation. We are just running it using
different date ranges.

A logs-processing-bundle bundle job groups these three coordinator jobs. By run‐
ning the bundle job, the three coordinator jobs will run at their corresponding fre‐
quencies. All workflow jobs and coordinator jobs are accessible and managed from a
single bundle job.

This logs-processing-bundle bundle job is also known as a data pipeline job.

Parameters, Variables, and Functions
Most jobs running on a regular basis are parameterized. This is very typical for Oozie
jobs. For example, we may need to run the same workflow on a daily basis, each
day using different input and output directories. In this case, we need two parameters
for our job: one specifying the input directory and the other specifying the output
directory.

Oozie parameters can be used for all type of Oozie jobs: workflows, coordinators, and
bundles. In “A Simple Oozie Job” on page 4, we specified the parameters for the job in
the job.properties file used to submit the job:

nameNode=hdfs://localhost:8020
jobTracker=localhost:8032
exampleDir=${nameNode}/user/${user.name}/ch01-identity
oozie.wf.application.path=${exampleDir}/app

In “Oozie Coordinators” on page 15, we saw a coordinator that triggers a daily work‐
flow to process the logs from the previous day. The coordinator job needs to pass the
location of the logs to process for the corresponding day to each workflow. This is
done using parameters as well.

Variables allow us to use the job parameters within the application definition. For
example, in “A Simple Oozie Job” on page 4, the MapReduce action uses the three
parameters of the job to define the cluster URIs as well as the input and output direc‐
tories to use for the job:

...
 <action name="identity-MR">
 <map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <prepare>
 <delete path="${exampleDir}/data/output"/>
 </prepare>
 <configuration>

Parameters, Variables, and Functions | 19

 ...
 <property>
 <name>mapred.input.dir</name>
 <value>${exampleDir}/data/input</value>
 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>${exampleDir}/data/output</value>
 </property>
 </configuration>
 </map-reduce>
 ...
 </action>
...

In addition to variables, Oozie supports a set of functions that can be used to carry
out sophisticated logic for resolving variable values during the execution of the Oozie
job. For example, the ${wf:id()} function resolves to the workflow job ID of the cur‐
rent job. The ${hadoop:counters('identity-MR')} function returns the counters of
the MapReduce job run by the identity-MR action. We cover these functions in detail
in Chapters 5, 6, and 7.

Application Deployment Model
An Oozie application is comprised of one file defining the logic of the application
plus other files such as configuration and JAR files and scripts. A workflow applica‐
tion consists of a workflow.xml file and may have configuration files, Pig scripts, Hive
scripts, JAR files, and more. Coordinator applications consist of a coordinator.xml file.
Bundle applications consist of a bundle.xml file.

In most of our examples, we use the filename workflow.xml for the
workflow definition. Although the default filename is work‐
flow.xml, you can choose a different name if you wish. However, if
you use a different filename, you’ll need to specify the full path
including the filename as the workflow app path in job.properties.
In other words, you can’t skip the filename and only specify the
directory. For example, for the custom filename my_wf.xml, you
would need to define oozie.wf.application.path=${example
Dir}/app/my_wf.xml. The same convention is true for coordinator
and bundle filenames.

Oozie applications are organized in directories, where a directory contains all files for
the application. If files of an application need to reference each other, it is recom‐
mended to use relative paths. This simplifies the process of relocating the application
to another directory if and when required. The JAR files required to execute the
Hadoop jobs defined in the action of the workflow must be included in the classpath

20 | Chapter 2: Oozie Concepts

of Hadoop jobs. One basic approach is to copy the JARs into the lib/ subdirectory of
the application directory. All JAR files in the lib/ subdirectory of the application
directory are automatically included in the classpath of all Hadoop jobs started by
Oozie. There are other efficient ways to include JARs in the classpath and we discuss
them in Chapter 9.

Oozie Architecture
Figure 2-6 captures the Oozie architecture at a very high level.

Figure 2-6. Oozie server architecture

When Oozie runs a job, it needs to read the XML file defining the application. Oozie
expects all application files to be available in HDFS. This means that before running a
job, you must copy the application files to HDFS. Deploying an Oozie application
simply involves copying the directory with all the files required to run the application
to HDFS. After introducing you to all aspects of Oozie, additional advice is given in
“Application Deployment Tips” on page 236.

The Oozie server is a Java web application that runs in a Java servlet container. By
default, Oozie uses Apache Tomcat, which is an open source implementation of the
Java servlet technology. Oozie clients, users, and other applications interact with the
Oozie server using the oozie command-line tool, the Oozie Java client API, or the
Oozie HTTP REST API. The oozie command-line tool and the Oozie Java API ulti‐
mately use the Oozie HTTP REST API to communicate with the Oozie server.

The Oozie server is a stateless web application. It does not keep any user or job infor‐
mation in memory between user requests. All the information about running and
completed jobs is stored in a SQL database. When processing a user request for a job,
Oozie retrieves the corresponding job state from the SQL database, performs the
requested operation, and updates the SQL database with the new state of the job. This
is a very common design pattern for web applications and helps Oozie support tens
of thousands of jobs with relatively modest hardware. All of the job states are stored

Oozie Architecture | 21

http://tomcat.apache.org

in the SQL database and the transactional nature of the SQL database ensures reliable
behavior of Oozie jobs even if the Oozie server crashes or is shut down. When the
Oozie server comes back up, it can continue to manage all the jobs based on their last
known state.

Oozie supports four types of databases: Derby, MySQL, Oracle, and PostgreSQL.
Oozie has built-in purging logic that deletes completed jobs from the database after a
period of time. If the database is properly sized for the expected load, it can be con‐
sidered maintenance-free other than performing regular backups.

Within the Oozie server, there are two main entities that do all the work, the Command
and the ActionExecutor classes.

A Command executes a well-defined task—for example, handling the submission of a
workflow job, monitoring a MapReduce job started from a workflow job, or querying
the database for all running jobs. Typically, commands perform a task and produce
one or more commands to do follow-up tasks for the job. Except for commands exe‐
cuted directly using the Oozie HTTP REST API, all commands are queued and exe‐
cuted asynchronously. A queue consumer executes the commands using a thread
pool. By using a fixed thread pool for executing commands, we ensure that the Oozie
server process is not stressed due to a large number of commands running concur‐
rently. When the Oozie server is under heavy load, the command queue backs up
because commands are queued faster than they can be executed. As the load goes
back to normal levels, the queue depletes. The command queue has a maximum
capacity. If the queue overflows, commands are dropped silently from the queue. To
handle this scenario, Oozie has a background thread that re-creates all dropped com‐
mands after a certain amount of time using the job state stored in the SQL database.

There is an ActionExecutor for each type of action you can use in a workflow (e.g.,
there is an ActionExecutor for MapReduce actions, and another for Pig actions). An
ActionExecutor knows how to start, kill, monitor, and gather information about the
type of job the action handles. Modifying Oozie to add support for a new type of
action in Oozie requires implementing an ActionExecutor and a Java main class, and
defining the XML syntax for the action (we cover this topic in detail in Chapter 10).

Given this overview of Oozie’s concepts and architecture, you should now feel fairly
comfortable with the overall idea of Oozie and the environment in which it operates.
We will expand on all of these topics as we progress through this book. But first, we
will guide you through the installation and setup of Oozie in the next chapter.

22 | Chapter 2: Oozie Concepts

CHAPTER 3

Setting Up Oozie

In this chapter, we describe how to build and install Oozie on a single machine. This
is suitable for installing evaluation and development environments while also intro‐
ducing Oozie’s general deployment architecture. Later in this chapter, we also cover
advanced installation topics required for a production environment.

Oozie Deployment
In this section, we outline how to deploy and configure Oozie and its related modules
on a real system. As explained in “Oozie Architecture” on page 21, there are four
basic systems in a standard Oozie setup. A short overview of each of those systems
will help you to better understand the Oozie setup and installation.

The Oozie server runs in a web container (e.g., Tomcat) and manages Oozie job
scheduling and execution. The Oozie server is actually a Hadoop client and a data‐
base client while it acts as a server for Oozie clients. It also provides an optional web
user interface for basic monitoring of jobs. This web UI utilizes a JavaScript library
called extJS, which is not Apache compliant. The Oozie server needs to package all
these required libraries into an oozie.war file. Although the Oozie server can be
installed on any machine collocated with any other system, we recommend installing
it on a separate machine to ensure its stability, especially in large production systems.

The Oozie client can connect to the Oozie server in multiple ways. The Oozie
command-line interface (CLI) is the most popular and convenient way of interacting
with the Oozie server. In addition, the Oozie server provides a standard REST API,
enabling you to write a client application in any language. Finally, Oozie also provides
a Java client library that could be used in any JVM-based application. The three types
of client applications can run on any machine provided it has network access to the
Oozie web service.

23

Typically, the Oozie server works with any recent Hadoop version. Oozie requires two
things to connect to any Hadoop system. First, Oozie should use the same version of
the Hadoop JARs as the installed Hadoop services. Second, Hadoop’s core-site.xml
should be configured to allow the Oozie service user (oozie) account to act as a proxy
user for Hadoop services (details explained later in this chapter).

Oozie supports multiple DBMSes for its internal use, including Derby, PostgreSql,
MySQL, and Oracle. The Oozie server requires two things to support any DBMS.
First, the appropriate JDBC JAR should be included in the oozie.war file. Second, the
oozie-site.xml must be configured with the relevant JDBC connection details. By
default, the Oozie package includes the required JAR and configurations for Derby.
Deploying and configuring a different DBMS system is the user’s responsibility.
Although the DBMS can be installed on any machine, we recommend that you install
the DB server on a separate machine than the Oozie server in production environ‐
ments.

Basic Installations
In this section, we explain the steps required to build and install Oozie on a single
machine. This discussion focuses primarily on the open source Apache version. Most
commercial Hadoop vendors also include Oozie as part of their distributions. If you
are using one of those, you can skip this section and follow the specific vendor-
provided installation instructions instead.

Requirements
The following tools are required in order to build and install Oozie:

• Unix-like operating system (Oozie has been tested on Linux and Mac OS X)
• Oracle Java JDK 1.6+
• Maven 3.0.1+ (only required if you are building Oozie)

24 | Chapter 3: Setting Up Oozie

http://bit.ly/oozie-oracle-java
http://bit.ly/oozie-maven

Make sure the Java and Maven commands such as java, javac, and
mvn are available in your Unix path. Your machine might already
have those tools installed. You can verify the correct version of Java
and Maven by running the following commands from your termi‐
nal window.

$ java –version
$ mvn -version

Build Oozie
The best way to install Oozie is to build it locally from an Oozie source release. You’ll
need to follow these steps:

1. Download and unpack the Oozie source code release from Apache:
$ cd <BUILD_BASE_PATH>
$ curl -O http://www.us.apache.org/dist/oozie/4.0.1/oozie-4.0.1.tar.gz
$ tar xvf oozie-4.0.1.tar.gz
$ cd oozie-4.0.1

2. Build the Oozie binary package:
$ bin/mkdistro.sh –DskipTests
[INFO] Scanning for projects...
....
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 5:05.467s
[INFO] Finished at: Mon Oct 27 00:43:14 PDT 2014
[INFO] Final Memory: 68M/306M
[INFO] --

Oozie distro created, DATE[2014.10.27-07:38:06GMT] VC-REV[unavailable],
available at [/Users/joe/apache/oozie/book_oozie-4.0.1/oozie-4.0.1/
 distro/target]

You can build and verify all test cases by not specifying the -DskipTests option:
$ bin/mkdistro.sh

In some cases, the build may fail due to insufficient memory. You
can execute export MAVEN_OPTS=-Xmx1024m to increase the mem‐
ory for Maven. The build might also fail due to a missing or incon‐
sistent JAR file downloaded into the local Maven cache. You can
remove the Maven cache using rm –rf ~/.m2/ and start a new
build.

Basic Installations | 25

http://www.us.apache.org/dist/oozie/4.0.1/oozie-4.0.1.tar.gz

Install Oozie Server
As mentioned in “Oozie Deployment” on page 23, the Oozie web application archive
(.war) file found in the Oozie binary package doesn’t contain all the required JAR or
library files. The missing JARs and libraries mainly come from three sources: Hadoop
JARs, JDBC JARs, and extJS package. You need to explicitly inject those into
oozie.war. The following steps show you how to inject the JARs, install Oozie, and
configure it:

1. Copy the Oozie binary package:
$ cd <INSTALLATION_DIR>
$ cp <BUILD_BASE_PATH>/
 oozie-4.0.1/distro/target/
 oozie-4.0.1-distro.tar.gz .
$ tar xvf oozie-4.0.1-distro.tar.gz
$ cd oozie-4.0.1

2. Collect third-party libraries.
Oozie provides a convenient way to inject any library into the original oozie.war
file. You can create a directory called libext/ in the same directory where the TAR
file is unpacked. Then, you copy all missing library and JAR files into the libext/
directory. The Oozie setup script will then inject the libraries into the original
WAR file and finally create a new self-contained WAR file that you can deploy in
any web server.
a. You can gather Hadoop JARs from either of these sources:

• The Oozie build directory contains the required JARs from major Hadoop
releases.

• Copy the Hadoop JAR from any Hadoop package or any installed Hadoop
system:

$ mkdir libext
$ cd libext
$ cp <BUILD_BASE_PATH>/oozie-4.0.1/hadooplibs/target/
 oozie-4.0.1-hadooplibs/oozie-4.0.1/\
 hadooplibs/hadooplib-2.3.0.oozie-4.0.1/* .

Or:
Copy JARs from <HADOOP_INSTALLATION_DIR>/ directory.

b. Download extJS 2.2 from http://extjs.com/deploy/ext-2.2.zip and copy it into
the libext/ directory:

$ cd <INSTALLATION_DIR>/oozie-4.0.1/libext
$ cp <EXT_JS_DIR>/ext-2.2.zip .
$ ls -1

26 | Chapter 3: Setting Up Oozie

...
commons-codec-1.4.jar
commons-collections-3.2.1.jar
...
ext-2.2.zip
guava-11.0.2.jar
hadoop-annotations-2.3.0.jar
hadoop-auth-2.3.0.jar
hadoop-client-2.3.0.jar
hadoop-common-2.3.0.jar
hadoop-hdfs-2.3.0.jar
hadoop-mapreduce-client-app-2.3.0.jar
hadoop-mapreduce-client-common-2.3.0.jar
hadoop-mapreduce-client-core-2.3.0.jar
hadoop-mapreduce-client-jobclient-2.3.0.jar
hadoop-mapreduce-client-shuffle-2.3.0.jar
hadoop-yarn-api-2.3.0.jar
hadoop-yarn-client-2.3.0.jar
hadoop-yarn-common-2.3.0.jar
hadoop-yarn-server-common-2.3.0.jar
...

3. Create a self-contained Oozie WAR file:
$ cd ..
$ bin/oozie-setup.sh prepare-war
 setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"

 INFO: Adding extension: <INSTALLATION_DIR>/libext/activation-1.1.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/avro-1.7.4.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 commons-beanutils-1.7.0.jar
 ..elided
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 guava-11.0.2.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-annotations-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-auth-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-client-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-common-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/hadoop-hdfs-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-mapreduce-client-app-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-mapreduce-client-common-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-mapreduce-client-core-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/

Basic Installations | 27

 hadoop-mapreduce-client-jobclient-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-mapreduce-client-shuffle-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-yarn-api-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-yarn-client-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-yarn-common-2.3.0.jar
 INFO: Adding extension: <INSTALLATION_DIR>/libext/
 hadoop-yarn-server-common-2.3.0.jar
 .. elided

 New Oozie WAR file with added 'ExtJS library, JARs' at
 <INSTALLATION_DIR>/oozie-server/webapps/oozie.war

 INFO: Oozie is ready to be started

4. Configure the Oozie server. In this basic installation, you can use the default con‐
figurations provided in the Oozie package. For advanced installation, you may
need to modify the configuration (we’ll discuss this later in this chapter).

5. Finally, create the Oozie DB:
$ bin/ooziedb.sh create -sqlfile oozie.sql -run
setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"
Validate DB Connection
DONE
..
Create SQL schema
DONE
Create OOZIE_SYS table
DONE
Oozie DB has been created for Oozie version '4.0.1'

The SQL commands have been written to: oozie.sql

Hadoop Cluster
This book assumes that you have a fundamental knowledge of Hadoop. You can learn
more about Hadoop from Hadoop: The Definitive Guide (O’Reilly) and from the
online Apache Hadoop documentation. In this section, we primarily describe the spe‐
cific Hadoop configuration required for Oozie.

28 | Chapter 3: Setting Up Oozie

http://bit.ly/hadoop_tdg_4e
http://hadoop.apache.org
http://hadoop.apache.org

1 “Secure Impersonation in Hadoop.”

Hadoop installation
If Hadoop is already installed, you can skip this section. Otherwise, use the online
instructions to install Hadoop in a pseudodistributed mode. In this book, most of the
examples assume a Hadoop deployment on localhost in a pseudodistributed mode.

Configuring Hadoop for Oozie. Oozie runs all Hadoop jobs as the end user, not as the
Unix user (oozie) who owns the Oozie service. In other words, the Oozie service
owner (oozie) serves as a proxy user for accessing Hadoop.1 So you need to configure
Hadoop to allow oozie as a proxy user. More specifically, the following two properties
must be added to $HADOOP_HOME/etc/hadoop/core-site.xml and Hadoop must be
restarted subsequent to those changes:

<!-- OOZIE -->
<property>
 <name>hadoop.proxyuser.[OOZIE_SERVICE_OWNER].hosts</name>
 <value>[OOZIE_SERVICE_HOSTNAME]</value>
</property>

<property>
 <name>hadoop.proxyuser.[OOZIE_SERVICE_OWNER].groups</name>
 <value>[OOZIE_SERVICE_OWNER_GROUP] </value>
</property>

Following are the typical example values for these variables.

[OOZIE_SERVICE_OWNER] oozie

[OOZIE_SERVICE_OWNER_GROUP] users

[OOZIE_SERVICE_HOSTNAME] localhost

Both properties can have multiple values, comma-separated. The
wildcard * might work for newer Hadoop versions. However, we
highly discourage using that value in production systems due to
potential security holes.

Start and Verify the Oozie Server
You’ll need to follow these steps:

1. Start the Oozie server:
$ bin/oozied.sh start

Setting OOZIE_HOME: <INSTALLATION_DIR>

Basic Installations | 29

http://bit.ly/oozie-hadoop-proxy
http://bit.ly/oozie-hadoop-install
http://bit.ly/oozie-hadoop-install

Setting OOZIE_CONFIG: <INSTALLATION_DIR>/conf
Sourcing: <INSTALLATION_DIR>/conf/oozie-env.sh
 setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"
..
Setting OOZIE_LOG: <INSTALLATION_DIR>/logs
..
Setting OOZIE_HTTP_PORT: 11000
..
Setting OOZIE_BASE_URL: http://<local-machine-name>:11000/oozie
..
Using CATALINA_HOME: <INSTALLATION_DIR>/oozie-server
...
Using CATALINA_PID: <INSTALLATION_DIR>/oozie-server/temp/oozie.pid

If a previous instance of the Oozie server was not stopped
properly, you might see the following error message:

Existing PID file found during start. Remove/clear
stale PID file

You can follow these steps to resolve the issue:
a. Stop Oozie using:

bin/oozied.sh stop

b. Check to see whether any Oozie process is still running:
ps -ef | grep oozie

c. If a process is running, kill it:
kill <PID>

d. Remove the PID file:
rm <INSTALLATION_DIR>/oozie-server/temp/oozie.pid

2. Check Oozie’s server status:
$ bin/oozie admin -oozie http://localhost:11000/oozie -status

 System mode: NORMAL

If it returns Error: IO_ERROR : java.net.ConnectException: Connection
refused, it means the Oozie server did not start properly. You can check the logs/
directory to find the root cause.

3. Verify through the web UI.
Go to http://localhost:11000/oozie.

4. Check the log files.

30 | Chapter 3: Setting Up Oozie

The logs/ directory contains multiple log files. The main log is oozie.log. The
catalina.* files contain Tomcat web server logs and they are very important and
useful for debugging startup errors and any OutOfMemory exception.

If the error message in the catalina.out file says, SEVERE:
Error initializing endpoint java.net.BindException:
Address already in use <null>:11000, it means that
another instance of Oozie server is running. You can either
stop or kill the process and clean up the PID file.

Advanced Oozie Installations
In the previous section, we described how to install an Oozie server on a single
machine, which is useful as a proof of concept or in development. In this section, we
discuss various advanced installation topics that are often required for a production
setup.

Configuring Kerberos Security
If the Hadoop cluster is secured with Kerberos authentication, the Oozie server needs
to provide the appropriate credentials to access Hadoop resources such as the Job
Tracker/ResourceManager and NameNode. The Oozie server uses a keytab file for
user oozie to get the Kerberos credentials. We describe Oozie security in detail in
“Oozie Security” on page 154. At a minimum, you need to add the following proper‐
ties in conf/oozie-site.xml to support Kerberos authentication to Hadoop in Oozie:

 <property>
 <name>oozie.service.HadoopAccessorService.kerberos.enabled</name>
 <value>true</value>
 <description>Indicates if Oozie is configured to use Kerberos.
 </description>
 </property>
 <property>
 <name>oozie.service.HadoopAccessorService.keytab.file</name>
 <value>${user.home}/oozie.keytab</value>
 <description>Location of the Oozie user keytab file in Oozie server
 box </description>
 </property>
 <property>
 <name>oozie.service.HadoopAccessorService.kerberos.principal</name>
 <value>${user.name}/localhost@${local.realm}</value>
 <description>Kerberos principal for Oozie service.</description>
 </property>

Advanced Oozie Installations | 31

http://web.mit.edu/kerberos

DB Setup
In this section, we describe how to configure the Oozie server to use MySQL and
Oracle. These substeps should be added to the steps described in “Install Oozie
Server” on page 26 if you want to use one of these databases.

MySQL configuration
For the MySQL configuration, you’ll need to follow these steps:

1. MySQL installation. Oozie has been tested against MySQL 5.1.x. If MySQL is
already installed, you can skip this step. Otherwise, download MySQL and follow
the online instructions to set up the MySQL server. At the end, make sure the
MySQL bin/ directory is in your Unix path.

2. Create the MySQL Oozie database:
$ mysql -u root
mysql> create database oozie;

 Query OK, 1 row affected (0.00 sec)

3. Create the MySQL Oozie user:
mysql> grant all privileges on oozie.* to 'oozie'@'localhost'
 identified by 'oozie';
Query OK, 0 rows affected (0.01 sec)

mysql> grant all privileges on oozie.* to 'oozie'@'%'
identified by 'oozie';
Query OK, 0 rows affected (0.00 sec)

4. Download the MySQL JDBC driver. You can download the package using the fol‐
lowing command:

$ curl -O http://cdn.mysql.com/Downloads/Connector-J/\
mysql-connector-java-5.1.25.tar.gz

You can extract the required mysql-connector-java-5.1.25-bin.jar file from the
downloaded TAR file.

5. Inject JDBC driver. The Oozie server needs the JDBC driver to access the data‐
base. You need to copy the mysql-connector-java-5.1.25-bin.jar into the libext/
directory (as described in step 3 in “Install Oozie Server” on page 26).

6. Configure the Oozie server. Add the following properties to oozie-site.xml to
make sure the Oozie server uses MySQL:

<property>
 <name>oozie.db.schema.name</name>
 <value>oozie</value>
</property>

32 | Chapter 3: Setting Up Oozie

http://bit.ly/oozie-mysql

<property>
 <name>oozie.service.JPAService.create.db.schema</name>
 <value>false</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.driver</name>
 <value>com.mysql.jdbc.Driver</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.url</name>
 <value>jdbc:mysql://localhost:3306/oozie</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.username</name>
 <value>oozie</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.password</name>
 <value>oozie</value>
</property>

Oracle configuration
The steps needed to install and use Oracle are very similar to the ones just outlined
for MySQL. Oracle 11g is the most commonly used version with Oozie. After instal‐
ling Oracle, you can follow these steps to configure Oozie to use it:

1. Create the Oracle Oozie user:
$ sqlplus system@localhost
SQL> create user oozie identified by oozie default tablespace users
 temporary tablespace temp;

User created.

SQL> grant all privileges to oozie;

Grant succeeded.

2. Download the Oracle JDBC driver. Download the JDBC driver for Oracle Data‐
base 11g Release 2 (ojdbc6.jar).

3. Inject JDBC driver. The Oozie server needs the JDBC driver to access the data‐
base. Copy the ojdbc6.jar into the libext/ directory (as described in step 3 in
“Install Oozie Server” on page 26).

4. Configure the Oozie server.
You need to add the following properties in oozie-site.xml to make sure the Oozie
server uses the Oracle database:

Advanced Oozie Installations | 33

http://bit.ly/oozie-jdbc

<property>
 <name>oozie.db.schema.name</name>
 <value>oozie</value>
</property>
<property>
 <name>oozie.service.JPAService.create.db.schema</name>
 <value>false</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.driver</name>
 <value>oracle.jdbc.driver.OracleDriver</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.url</name>
 <value>jdbc:oracle:thin:@localhost:1521:oozie</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.username</name>
 <value>oozie</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.password</name>
 <value>oozie</value>
</property>

Shared Library Installation
As described in the previous chapter, Oozie schedules and executes various types of
actions such as MapReduce, Pig, Hive, DistCp, and Sqoop. Each type requires a sepa‐
rate set of JAR files for its execution. Oozie provides multiple ways to make those
JARs available during execution. We will discuss the details of managing shared libra‐
ries later in “Managing Libraries in Oozie” on page 147. In this section, we describe a
convenient way to make those action-specific JAR files available to Oozie right from
the time of installation.

The Oozie binary distribution includes a shared library TAR file (oozie-sharelib-
<VERSION>.tar.gz). It contains the versions of JARs that are currently supported for
the different action types. During installation, untar this file and upload the shared
library directory to HDFS. This directory is known as the Oozie sharelib and must
be owned by the Oozie service user (oozie). The following commands executed as
user oozie will accomplish this:

$ cd <INSTALLATION_DIR>
$ tar xvf oozie-4.0.1/oozie-sharelib-4.0.1.tar.gz
$ hdfs dfs –put share share

34 | Chapter 3: Setting Up Oozie

Oozie, by default, looks into the /user/${oozie_service_user}/share/lib directory on
HDFS for any system JAR file. If you want to deploy them into a different location,
specify the new location in conf/oozie-site.xml as shown here:

<property>
 <name>oozie.service.WorkflowAppService.system.libpath</name>
 <value><OOZIE_SYSTEM_LIBRARY>/share/lib</value>
</property>

Sharelib since version 4.1.0
Oozie 4.1.0 made a significant change to support an important feature. The goal of
this change is to support seamless upgrades of the Oozie sharelib even when the
Oozie service is up and running. In earlier versions, Oozie was looking for the shared
library for each action under, for example, the /user/oozie/share/lib directory. In
newer releases, Oozie looks for a different directory pattern (/user/oozie/share/lib/lib_
$timestamp$), and picks the directory with the newest timestamp. Oozie will pick up
the shared library from the old directory path (without _timestamp) only if the time‐
stamped lib directories don’t exist. This raises some interesting questions:

What is the ideal process for uploading a new sharelib?
In Oozie 4.1.0 and newer versions, uploading the sharelib JARs using the hdfs
dfs command is not a good option. Oozie provides an option in oozie-setup.sh
command to upload the JARs transparently. This command ensures that the lib_
$timestamp$ directory is created using the current time and copies the JARs into
that directory. The following command is used to achieve this:

$ oozie-setup.sh sharelib create -fs FS_URI [-locallib SHARED_LIBRARY]
$ oozie-setup.sh sharelib create -fs
hdfs://namenode01.grid.mycompany.com:8020 -locallib /tmp/share/lib

Here are the details of the arguments for this command:

FS_URI
The HDFS URI where the script uploads the sharelib. Generally, it is
just hdfs://NN_SERVER_NAME:port. The rest of it is the full path, and
it is determined either by the value of the property
oozie.serviceWorkflowAppService.system.libpath defined in the oozie-
site.xml file or the default path (/user/${oozie_service_user}/share/lib).

SHARED_LIBRARY
This optional parameter determines the location of the shared library tarball
or its expanded directory in the local filesystem. If this is omitted, Oozie
looks for the shared library in the Oozie installation directory.

Advanced Oozie Installations | 35

When Oozie is running, is there a way to upgrade the sharelib?
Yes. Once the sharelib directory is uploaded, the admin can upgrade to this new
sharelib even when Oozie is running. The command oozie admin –share
libupdate is the way to do it and ensures that Oozie uses the latest version.

How do you clean up shared libraries that are not used?
It can become an operational challenge to manage multiple sets of shared libra‐
ries with different timestamps. Oozie enforces a mechanism to clean up the
directories with older timestamps. During the Oozie server startup, it removes
any shared library directory that is older than seven days and is not the latest two
instances. The seven-day retention can be overridden using the property
ShareLibService.temp.sharelib.retention.days in oozie-site.xml. The old-
style sharelib directory without the _timestamp (e.g., /user/oozie/share/lib) will
not be cleaned up if it exists.

How can I see the currently used sharelib?
Users can check the active sharelib path at any time without going to HDFS.
There are convenient commands available for this, which are listed here:

$ oozie admin –shareliblist
$ oozie admin -shareliblist pig
$ oozie admin -shareliblist hive

It’s often the case that older sharelibs do not work correctly with
newer Oozie servers, so you should update the sharelib as part of
every version upgrade.

Oozie Client Installations
As you already know, Oozie provides client tools and libraries and these are bundled
as a separate TAR and included as part of the Oozie binary package. The Oozie
single-node server setup described in “Install Oozie Server” on page 26 also installs
the Oozie client. The primary CLI tool is called oozie and you will need to install the
client to get access to it. This section lists the steps required to install the Oozie client
on any machine (and location) because the server and client are typically deployed on
different machines, especially in a production setup. First, untar the Oozie client
archive to deploy it under a directory of your choice:

$ tar xvf oozie-client-4.0.1.tar.gz
$ cd oozie-client-4.0.1

After this deployment, you will find the command-line tool in the bin/ directory and
all the JARs in the lib/ directory. You should add this bin/ directory to your Unix path:

36 | Chapter 3: Setting Up Oozie

export
 PATH=<CURRENT_WORKING_DIR>/oozie-client-4.0.1/bin:$PATH

Lastly, you can verify that the Oozie client is installed properly by running a sample
command:

oozie admin –status
 –oozie <OOZIEURL>

If the Oozie command throws the following error message, it
means the command did not find the Oozie web server URL to
connect to:

Oozie URL is not available neither in command option or
in the environment

The oozie command-line utility looks for the Oozie server URL in
two places: in the command-line option -oozie <URL>, and in the
shell environment. If you use the oozie command frequently
against the same Oozie instance, it is a good idea to add this:

export OOZIE_URL=<Oozie_Server_URL>

In this chapter, we saw how to build, configure, and deploy an Oozie server and cli‐
ent. In addition to the step-by-step installation guide, this chapter also exposed you to
the various internal components of a working Oozie system along with some practi‐
cal configuration tips. The next chapter will focus on building workflow applications,
the fundamental building block of Oozie.

Advanced Oozie Installations | 37

CHAPTER 4

Oozie Workflow Actions

The previous chapter took us through the Oozie installation in detail. In this chapter,
we will start looking at building full-fledged Oozie applications. The first step is to
learn about Oozie workflows. Many users still use Oozie primarily as a workflow
manager, and Oozie’s advanced features (e.g., the coordinator) are built on top of the
workflow. This chapter will delve into how to define and deploy the individual action
nodes that make up Oozie workflows. The individual action nodes are the heart and
soul of a workflow because they do the actual processing and we will look at all the
details around workflow actions in this chapter.

Workflow
As explained earlier in “A Recurrent Problem” on page 1, most Hadoop projects start
simple, but quickly become complex. Let’s look at how a Hadoop data pipeline typi‐
cally evolves in an enterprise. The first step in many big data analytic platforms is
usually data ingestion from some upstream data source into Hadoop. This could be a
weblog collection system or some data store in the cloud (e.g., Amazon S3). Hadoop
DistCp, for example, is a common tool used to pull data from S3. Once the data is
available, the next step is to run a simple analytic query, perhaps in the form of a Hive
query, to get answers to some business question. This system will grow over time with
more queries and different kinds of jobs. At some point soon, there will be a need to
make this a recurring pipeline, typically a daily pipeline. The first inclination of many
users is to schedule this using a Unix cron job running a script to invoke the pipeline
jobs in some sequence.

As new requirements and varied datasets start flowing into this Hadoop system, this
processing pipeline quickly becomes unwieldy and complicated. It can’t be managed
in a cron job anymore. This is when people start exploring Oozie and they start by
implementing an Oozie workflow.

39

http://aws.amazon.com/s3/

“A Simple Oozie Job” on page 4 showed a simple workflow and “Oozie Workflows” on
page 13 defined it as a collection of action and control nodes arranged in a directed
acyclic graph (DAG) that captures control dependency where each action typically is
a Hadoop job. Workflows are defined in an XML file, typically named workflow.xml.
Each job, like the DistCp or the subsequent Hive query in the previous example, ends
up as an action node in this workflow XML. They can be chained together using the
workflow definition language. If you want a recurring pipeline you can also make this
a daily coordinator job, but we won’t cover the coordinator until later in the book (for
more information, refer to Chapter 6). The first and the most important part of writ‐
ing such pipelines is to learn to write workflows and to learn how to define and pack‐
age the individual actions that make up these workflows.

Actions
Action nodes define the jobs, which are the individual units of work that are chained
together to make up the Oozie workflow. Actions do the actual processing in the
workflow. An action node can run a variety of jobs: MapReduce, Pig, Hive, and more.

Actions in a workflow can either be Hadoop actions or general-purpose actions that
allow execution of arbitrary code. Not all of the required processing fits into specific
Hadoop action types, so the general-purpose action types come in handy for a lot of
real-life use cases. We will cover them both in this chapter.

Action Execution Model
Before we get into the details of the Oozie actions, let’s look at how Oozie actually
runs these actions. A clear understanding of Oozie’s execution model will help us to
design, build, run, and troubleshoot workflows.

When a user runs a Hadoop job from the command line, the client executable (e.g.,
Hadoop, Pig, or Hive) runs on the node where the command is invoked. This node is
usually called the gateway, or an edge node that sits outside the Hadoop cluster but
can talk to the cluster. It’s the responsibility of the client program to run the underly‐
ing MapReduce jobs on the Hadoop cluster and return the results. The Hadoop envi‐
ronment and configuration on the edge node tell the client programs how to reach
the NameNode, JobTracker, and others. The execution model is slightly different if
you decide to run the same job through an Oozie action.

Oozie runs the actual actions through a launcher job, which itself is a Hadoop Map‐
Reduce job that runs on the Hadoop cluster. The launcher is a map-only job that runs
only one mapper. Let’s assume the Oozie job is launched by the oozie CLI. The oozie
CLI client will submit the job to the Oozie server, which may or may not be on the
same machine as the client. But the Oozie server does not launch the Pig or Hive cli‐
ent locally on its machine. The server first launches a job for the aforementioned

40 | Chapter 4: Oozie Workflow Actions

launcher job on the Hadoop cluster, which in turn invokes the appropriate client
libraries (e.g., Hadoop, Pig, or Hive).

Users new to Oozie usually have questions about the need for a launcher job and
wonder about the choice of this architecture. Let’s see how and why the launcher job
helps. Delegating the client responsibilities to the launcher job makes sure that the
execution of that code will not overload or overwhelm the Oozie server machine. A
fundamental design principle in Oozie is that the Oozie server never runs user code
other than the execution of the workflow itself. This ensures better service stability by
isolating user code away from Oozie’s code. The Oozie server is also stateless and the
launcher job makes it possible for it to stay that way. By leveraging Hadoop for run‐
ning the launcher, handling job failures and recoverability becomes easier for the
stateless Oozie server. Hadoop is built to handle all those issues, and it’s not smart to
reinvent the wheel on the Oozie server.

This architecture also means that the action code and configuration have to be pack‐
aged as a self-contained application and must reside on HDFS for access across the
cluster. This is because Hadoop will schedule the launcher job on any cluster node. In
most cases, the launcher job waits for the actual Hadoop job running the action to
finish before exiting. This means that the launcher job actually occupies a Hadoop
task slot on the cluster for the entire duration of the action. Figure 4-1 captures how
Oozie executes a Hive action in a workflow. The Hive action also redirects the output
to the Hive launcher job’s stdout/stderr and the output is accessible through the
Oozie console. These patterns are consistent across most asynchronous action types
(covered in “Synchronous Versus Asynchronous Actions” on page 73), except the
<map-reduce> action. The <map-reduce> launcher is the exception and it exits right
after launching the actual job instead of waiting for it to complete.

Figure 4-1. Action execution model

Actions | 41

If many Oozie actions are submitted simultaneously on a small Hadoop cluster, all
the task slots could be occupied by the launcher jobs. These launchers will then be
waiting forever to run the action’s Hadoop jobs that can’t be scheduled due to unavail‐
ability of slots, causing a messy deadlock. This deadlock can be solved by configuring
the launcher and the actual action to run on different Hadoop queues and by making
sure the launcher queue cannot fill up the entire cluster. The topic of launcher config‐
uration is covered in detail in “Launcher Configuration” on page 85.

Action Definition
Oozie’s XML specification for each action is designed to define and deploy these
jobs as self-contained applications. The key to mastering Oozie is to understand how
to define, configure, and parameterize the individual actions in a workflow. In this
section, we will cover all of the different action types and cover the details of their
specification.

Actions are defined in the workflow XML using a set of elements that are specific and
relevant to that action type. Some of these elements are common across many action
types. For example, all Hadoop actions need the <name-node> and <job-tracker>
elements. But some of the other XML elements are specific to particular actions. For
example, the Pig action needs a <script> element, but the Java action does not. As a
workflow system custom built for Hadoop, Oozie makes it really easy and intuitive
for users to define all these actions meant for executing various Hadoop tools and
processing paradigms. Before looking at all the actions and their associated elements,
let’s look at an example action again in Example 4-1.

Example 4-1. Action node

 <action name="identity-MR">
 <map-reduce>
 <job-tracker>localhost:8032</job-tracker>
 <name-node>hdfs://localhost:8020</name-node>
 <prepare>
 <delete path="/user/joe/data/output"/>
 </prepare>
 <configuration>
 <property>
 <name>mapred.mapper.class</name>
 <value>org.apache.hadoop.mapred.lib.IdentityMapper</value>
 </property>
 <property>
 <name>mapred.reducer.class</name>
 <value>org.apache.hadoop.mapred.lib.IdentityReducer</value>
 </property>
 <property>
 <name>mapred.input.dir</name>
 <value>/user/joe/data/input</value>

42 | Chapter 4: Oozie Workflow Actions

 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>/user/joe/data/input</value>
 </property>
 </configuration>
 </map-reduce>
 <ok to="success"/>
 <error to="fail"/>
 </action>

All action nodes start with an <action> element with a name attribute that indicates
the action name. Action nodes have three subelements: the <action-type> encapsu‐
lating the definition and all of the configuration for the action, <ok>, and the <error>
subelements that indicate the transitions to follow depending on the exit status of the
action. We will now dig further into the various action types required for building
workflows.

As explained in “Application Deployment Model” on page 20, the
workflow.xml file and all the required binaries, scripts, archives,
files, and configuration are packaged and deployed in an HDFS
directory. The workflow.xml file is under the workflow application
root directory on HDFS (oozie.wf.application.path).

Action Types
This section will cover all Oozie action types, but we will first look at a couple of
actions in great detail and the other action types will fall in place rather easily after
that. We will focus on the <map-reduce> Hadoop action and the general-purpose
<java> action at first.

We encourage you to read through these two action types (<map-
reduce> and <java>) closely even if they are not of interest to you,
as we will cover all of the common XML elements in the context of
these two actions. The usage and meaning of most elements repeat
across the other action types and can just be borrowed and replica‐
ted. There is a lot of boilerplate XML content explained here that
won’t need further explanation in other action types.

MapReduce Action
We already saw a sample Oozie <map-reduce> action in Example 4-1. We will analyze
it in more detail in this section. This action type supports all three variations of a
Hadoop MapReduce job: Java, streaming, and pipes. The Java MapReduce job is the
most typical of the three and you can think of the other two as special cases. Let’s look

Action Types | 43

at the different XML elements needed to configure and define a <map-reduce> action
through Oozie. The following is an ordered sequence of XML elements; you must
specify them in order when writing the action definition in your workflows (elements
can be omitted, but if present, they should be in sequence):

• job-tracker (required)
• name-node (required)
• prepare

• streaming or pipes
• job-xml

• configuration

• file

• archive

The Oozie XML has a well-defined schema definition (XSD), as
most XMLs do. These schema definitions are verbose and can be
found in the Oozie documentation. One way to understand the
action definition is to look at the schema definition. It’s not always
easy to read but can come in handy sometimes as the source of
truth for the list of elements supported and their sequence.

The action needs to know the JobTracker (JT) and the NameNode (NN) of the under‐
lying Hadoop cluster where Oozie has to run the MapReduce job. The first two ele‐
ments in the previous list are meant for specifying them. These are required elements
for this action:

...
 <job-tracker>localhost:8032</job-tracker>
 <name-node>hdfs://localhost:8020</name-node>
...

As already explained in “A Simple Oozie Job” on page 4, the <job-
tracker> element can refer to either the JobTracker or the
ResourceManager based on the Hadoop version in use. Also, there
are ways to globally specify common elements like the JT and NN
to be shared among multiple actions in a workflow. We cover this
in “Global Configuration” on page 83.

44 | Chapter 4: Oozie Workflow Actions

http://bit.ly/oozie-spec

You should not use the Hadoop configuration properties
<mapred.job.tracker> (JobTracker) and <fs.default.name>
(NameNode) as part of an Oozie workflow action definition. Oozie
will throw an error on those because it expects the <job-tracker>
and <name-node> elements instead. This is true for all Hadoop
action types, including the <map-reduce> action.

The <prepare> section is optional and is typically used as a preprocessor to delete
output directories or HCatalog table partitions or to create some directories required
for the action. This delete helps make the action repeatable and enables retries after
failure. Without this cleanup, retries of Hadoop jobs will fail because Hadoop checks
for nonexistence of the output directories and tries to create them for the job. So
deleting them before running the action is a common use case for this element. Using
<prepare> to create directories is also supported, but not as common as the delete
in usage:

...
 <prepare>
 <delete path="hdfs://localhost:8020/user/joe/output"/>
 </prepare>
...

The <job-xml> element(s) and/or the <configuration> section can be used to cap‐
ture all of the Hadoop job configuration properties. The worker code for the MapRe‐
duce action is specified as part of this configuration using the mapred.mapper.class
and the mapred.reducer.class properties. These properties specify the actual Java
classes to be run as map and reduce as part of this action:

...
 <configuration>
 <property>
 <name>mapred.mapper.class</name>
 <value>org.myorg.FirstJob.Map</value>
 </property>
 <property>
 <name>mapred.reducer.class</name>
 <value>org.myorg.FirstJob.Reduce</value>
 </property>
 </configuration>
...

Action Types | 45

http://bit.ly/oozie-hcatalog

Hadoop supports two distinct API packages, commonly
referred to as the mapred and mapreduce APIs. The old
org.apache.hadoop.mapred package and the newer
org.apache.hadoop.mapreduce package are functionally very sim‐
ilar, but the newer mapreduce API has cleaner abstractions and is
better organized though less mature and stable at this point. Refer
to the Hadoop documentation for more details. By default, Oozie
supports only the older mapred API. There is a way to use the new
API with Oozie (covered in “Supporting New API in MapReduce
Action” on page 165).

When you write a Hadoop Java MapReduce program, you need to write a main driver
class that specifies the job configuration, mapper class, reducer class, and so on.
Oozie simplifies things by handling this responsibility for you. You can just write the
mapper and reducer classes, package them as a JAR, and submit the JAR to the Oozie
action. Oozie takes care of the Hadoop driver code internally and uses the older
mapred API to do so. However, you must be careful not to mix the new Hadoop APIs
in their mapper/reducer class with the old API in Oozie’s driver code. This is one of
the reasons why Oozie only supports the older mapred API out of the box. Refer to
the Hadoop examples to learn more about the MapReduce driver code.

Oozie also supports the <file> and <archive> elements for actions that need them.
This is the native, Hadoop way of packaging libraries, archives, scripts, and other data
files that jobs need, and Oozie provides the syntax to handle them. Refer to the
Hadoop documentation for more information on files and archives. Users can
specify symbolic links to files and archives using the # symbol in the workflow, as the
following code fragment will show. The links themselves can’t have slashes (/) in
them. Oozie creates these symlinks in the workflow root directory, and other files in
the application can refer to and access them using relative paths.

Oozie does not support the libjars option available as part of the
Hadoop command line. But Oozie does provide several ways to
handle JARs and shared libraries, which are covered in “Managing
Libraries in Oozie” on page 147.

In the following example, the myFile.txt file referred to by the <file> element needs
to be deployed in the myDir1 subdirectory under the wf/ root directory on HDFS. A
symlink named file1 will be created in the workflow root directory. The archive file
mytar.tgz also needs to be copied to the workflow root directory on HDFS and Oozie
will unarchive it into a subdirectory called mygzdir/ in the current execution direc‐
tory on the Hadoop compute nodes. This is how Hadoop generally distributes files
and archives using the distributed cache. Archives (TARs) are packaged and

46 | Chapter 4: Oozie Workflow Actions

http://bit.ly/oozie-mapred-api
http://bit.ly/oozie-mapreduce-api
http://bit.ly/oozie-hadoop-ex
http://bit.ly/oozie-hadoop-commands

deployed, and the specified directory (mygzdir/) is the path where your MapReduce
code can find the files in the archive:

...
 <file>hdfs://localhost:8020/user/myUser/wf/myDir1/myFile.txt#file1</file>
 <archive>hdfs://localhost:8020/user/myUser/wf/mytar.tgz#mygzdir</archive>
...

Now, putting all the pieces together, a sample <map-reduce> action is shown here:
...
 <action name="myMapReduceAction">
 <map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <prepare>
 <delete path="${myMapReduceActionOutput}"/>
 </prepare>
 <job-xml>/myfirstjob.xml</job-xml>
 <configuration>
 <property>
 <name>mapred.mapper.class</name>
 <value>org.myorg.FirstJob.Map</value>
 </property>
 <property>
 <name>mapred.reducer.class</name
 <value>org.myorg.FirstJob.Reduce</value>
 </property>
 <property>
 <name>mapred.input.dir</name>
 <value>${myMapReduceActionInput}</value>
 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>${myMapReduceActionOutput}</value>
 </property>
 <property>
 <name>mapred.reduce.tasks</name>
 <value>${JobNumReducers}</value>
 </property>
 </configuration>
 <file>myDir1/myFile.txt#file1</file>
 <archive>mytar.tgz#mygzdir</archive>
 </map-reduce>
 </action>
...

The preceding example uses typical conventions for variable substi‐
tution and parameterization (we will look at this in detail in
“Parameterization” on page 86). This example illustrates some of
the best practices in writing an action definition.

Action Types | 47

Streaming and pipes are special kinds of MapReduce jobs, and this action supports
both. They are both mechanisms that Hadoop supports to help run non-Java code as
MapReduce jobs. This is to help users who might have to port existing code written in
other languages like Python or C++ to Hadoop’s MapReduce framework in Java. Also,
some users might just prefer other programming languages.

Depending on whether you want to execute streaming or pipes, you can have either
of those elements or neither. But you cannot specify both <streaming> and <pipes>
as part of a single <map-reduce> action. Also, if they are present, they require some
special subelements specific to those execution modes.

Streaming
Streaming jobs support the following elements in addition to the <map-reduce> ele‐
ments we saw previously (these are subelements under the <streaming> element):

• mapper

• reducer

• record-reader

• record-reader-mapping

• env

Streaming jobs run binaries or scripts and obviously need a mapper and reducer exe‐
cutable. These are packaged through the <file> and <archive> elements as
explained in the previous section. If the <file> element is missing for a streaming
job, the executables are assumed to be available in the specified path on the local
Hadoop nodes. If it’s a relative path, it’s assumed to be relative to the workflow root
directory.

You might have noticed that the mapred.mapper.class and/or
mapred.reducer.class properties can be defined as part of the
configuration section for the action as well. If present, those will
have higher priority over the <mapper> and <reducer> elements in
the streaming section and will override the values in the streaming
section.

You can optionally give a <record-reader> and <record-reader-mapping> through
those elements to the streaming MapReduce job. Refer to the Hadoop documentation
for more information on those properties. The <env> element comes in handy to set
some environment variables required by the scripts. Here is an example of a stream‐
ing section:

48 | Chapter 4: Oozie Workflow Actions

http://bit.ly/oozie-record-reader

...
 <streaming>
 <mapper>python MyCustomMapper.py</mapper>
 <reducer>python MyCustomReducer.py</reducer>
 <record-reader>StreamXmlRecordReader</record-reader>
 <env>output_dir=/tmp/output</env>
 </streaming>
...

Pipes
While streaming is a generic framework to run any non-Java code in Hadoop, pipes
are a special way to run C++ programs more elegantly. Though not very popular,
Oozie’s <map-reduce> action does support a <pipes> section for defining pipes jobs
and it includes the following subelements:

• map

• reduce

• inputformat

• partitioner

• writer

• program

The <program> element is the most important in the list and it points to the C++ exe‐
cutable to be run. This executable needs to be packaged with the workflow applica‐
tion and deployed on HDFS. You can also optionally specify the <map> class,
<reduce> class, <inputformat>, <partitioner>, and <writer> elements. Refer to the
Hadoop documentation on pipes for more details. Here is an example of a pipes sec‐
tion in the Oozie action:

...
 <pipes>
 <program>hdfs://localhost:8020/user/myUser/wf/bin/
 wordcount-simple#wordcount-simple</program>
 </pipes>
...

As a general rule in Oozie, the exit status of the Hadoop MapRe‐
duce job and the job counters must be available to the workflow job
after the Hadoop job completes. Without this, the workflow may
not be able to decide on the next course of action. Oozie obviously
needs to know if the job succeeded or failed, but it is also common
for the workflow to make decisions based on the exit status and the
counters.

Action Types | 49

http://bit.ly/oozie-pipes

MapReduce example
Now, let’s look at a specific example of how a Hadoop MapReduce job is run on the
command line and convert it into an Oozie action definition. You’re likely already
familiar with running basic Hadoop jobs from the command line. Using that as a
starting point and converting it to an action definition in Oozie will make it easier for
you to become familiar with the workflow syntax. Here’s an example:

$ hadoop jar /user/joe/myApp.jar myAppClass
 -Dmapred.job.reduce.memory.mb=8192 /hdfs/user/joe/input
 /hdfs/user/joe/output prod

The command just shown runs a Java MapReduce job to implement some business
logic. The myApp.jar file packages the code that runs the mapper and the reducer
class. The job requires 8 GB memory for its reducers (and that is) defined in the com‐
mand line above using the -D option). The job also takes three command-line argu‐
ments. The first one is the input directory on HDFS (/hdfs/user/joe/input), the second
argument is the output directory (/hdfs/user/joe/output), and the last one is the execu‐
tion type (prod), which is some application-specific argument. The arguments and
the directory paths themselves are just examples; it could be anything in reality.

In “Action Types” on page 43, we covered how a typical Java MapReduce program has
a main driver class that is not needed in Oozie. You just need to specify the mapper
and reducer class in the action definition. But this also requires knowing the actual
mapper and reducer class in the JAR to be able to write the Oozie <map-reduce>
action. In the command line above, myAppClass is the main driver class. This is part
of the main driver code for the preceding Hadoop example:

...
 /**
 * The main driver for the map/reduce program.
 * Invoke this method to submit the map/reduce job.
 */
 public static void main(String[] args) throws IOException {
 JobConf conf = new JobConf(myAppClass.class);
 conf.setJobName("myAppClass");

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MyMapClass.class);
 conf.setReducerClass(MyRedClass.class);
...

Given this, the command line for the preceding Hadoop job submission can be speci‐
fied in an Oozie workflow action as shown here:

 <map-reduce>
 <job-tracker>jt.mycompany.com:8032</job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020</name-node>

50 | Chapter 4: Oozie Workflow Actions

 <prepare>
 <delete path="hdfs://nn.mycompany.com:8020/hdfs/user/joe/output"/>
 </prepare>
 <configuration>
 <property>
 <name>mapred.mapper.class</name>
 <value>com.myBiz.mr.MyMapClass</value>
 </property>
 <property>
 <name>mapred.reducer.class</name>
 <value>com.myBiz.mr.MyRedClass</value>
 </property>
 <property>
 <name>mapred.job.reduce.memory.mb</name>
 <value>8192</value>
 </property>
 <property>
 <name>mapred.input.dir</name>
 <value>/hdfs/user/joe/input</value>
 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>/hdfs/user/joe/output</value>
 </property>
 </configuration>
 </map-reduce>
 <ok to="success"/>
 <error to="fail"/>
</action>

You might notice that the preceding Oozie action definition does not have any refer‐
ence to the main JAR (/user/joe/myApp.jar) that you saw in the Hadoop command
line. This is because of the way Oozie workflows are packaged and deployed. Oozie
knows where to look for and find this JAR. The JAR has to be copied to the lib/ sub‐
directory under the workflow application root directory on HDFS.

Due to the implicit handling of the main driver code in Oozie, some users who are
new to Hadoop are likely to be confused when they try to switch between the Hadoop
command line and the Oozie <map-reduce> action. This is a little subtle and tricky,
but the translation to an Oozie action is a lot more straightforward with all the other
action types that we cover later in this chapter.

For the sake of clarity, the example discussed in this section specifi‐
cally skips variable substitution and parameterization. It would be a
good exercise for readers to parameterize this example using vari‐
ables (“EL Variables” on page 87 provides insight on how to do
this).

Action Types | 51

Streaming example
Let’s look at a Python streaming job invoked using the Hadoop client:

$ hadoop jar /opt/hadoop/share/hadoop/tools/lib/hadoop-*streaming*.jar
 -file /home/joe/mapper.py -mapper /home/joe/mapper.py
 -file /home/joe/reducer.py -reducer /home/joe/reducer.py
 -input hdfs://nn.mycompany.com:8020/hdfs/user/joe/input/
 -output hdfs://nn.mycompany.com:8020/hdfs/user/joe/output/

This command-line example runs a Python streaming job to implement a Hadoop
MapReduce application. The Python script mapper.py is the code it runs for the map‐
per, and reducer.py is the Python script it runs for the reducer. The job reads its input
from the /hdfs/user/joe/input/ directory on HDFS and writes the output to /hdfs/
user/joe/output/. The previous example can be specified in Oozie as shown in
Example 4-2.

Example 4-2. MapReduce streaming action

<action name="myStreamingMRAction">
 <map-reduce>
 <job-tracker>jt.mycompany.com:8032</job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020</name-node>
 <prepare>
 <delete path="hdfs://nn.mycompany.com:8020/hdfs/user/joe/output"/>
 </prepare>
 <streaming>
 <mapper>python mapper.py</mapper>
 <reducer>python reducer.py</reducer>
 </streaming>
 <configuration>
 <property>
 <name>mapred.input.dir</name>
 <value>/hdfs/user/joe/input</value>
 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>/hdfs/user/joe/output</value>
 </property>
 </configuration>
 <file>wfDir/mapper.py#mapper.py</file>
 <file>wfDir/redcer.py#reducer.py</file>
 </map-reduce>
 <ok to="success"/>
 <error to="fail"/>
</action>

Java Action
Oozie’s Java action is a great way to run custom Java code on the Hadoop cluster. The
Java action will execute the public static void main(String[] args) method of

52 | Chapter 4: Oozie Workflow Actions

the specified Java main class. It is technically considered a non-Hadoop action. This
action runs as a single mapper job, which means it will run on an arbitrary Hadoop
worker node.

While it’s not recommended, Java action can be used to run Hadoop MapReduce jobs
because MapReduce jobs are nothing but Java programs after all. The main class
invoked can be a Hadoop MapReduce driver and can call Hadoop APIs to run a Map‐
Reduce job. In that mode, Hadoop spawns more mappers and reducers as required
and runs them on the cluster. The reason this approach is not ideal is because Oozie
does not know about or manage the MapReduce job spawned by the Java action,
whereas it does manage the job run by the <map-reduce> action we saw in the previ‐
ous section. There are distinct advantages to being tightly integrated as a <map-
reduce> action in Oozie instead of being just another Java program:

• Because Oozie knows that the <map-reduce> action runs a Hadoop job, it pro‐
vides easy access to Hadoop counters for this job. We will learn more about these
counters in “EL Variables” on page 87. It’s a lot harder to save and access the
counters of a Hadoop job if it is invoked as a <java> action.

• The launcher map task that launches the <map-reduce> action completes imme‐
diately and Oozie directly manages the MapReduce job. This frees up a Hadoop
slot for a MapReduce task that would have otherwise been occupied by the
launcher task in the case of a <java> action.

We saw in “MapReduce Action” on page 43 that Oozie supports
only the older, mapred Java API of Hadoop. However, the Java class
invoked via the <java> action could use the newer mapreduce API
of Hadoop. This is not recommended, but is still a potential work‐
around for people committed to using the newer Hadoop API.

The Java action is made up of the following elements:

• job-tracker (required)
• name-node (required)
• prepare

• configuration

• main-class (required)
• java-opts

• arg

• file

Action Types | 53

• archive

• capture-output

We have seen the <job-tracker>, <name-node>, <prepare>, <configuration>,
<file>, and <archive> elements in the context of a <map-reduce> action, which
work exactly the same with the <java> action or any other action for that matter. Let’s
look at the elements specific to the <java> action.

The key driver for this action is the Java main class to be run plus any arguments
and/or JVM options it requires. This is captured in the <main-class>, <arg>, and
<java-opts> elements, respectively. Each <arg> element corresponds to one argu‐
ment and will be passed in the same order, as specified in the workflow XML to the
main class by Oozie.

The <capture-output> element, if present, can be used to pass the output back to the
Oozie context. The Java program has to write the output in Java properties file format
and the default maximum size allowed is 2 KB. Instead of stdout, the Java program
should write to a file path defined by the system and accessible via the system prop‐
erty oozie.action.output.properties. Other actions in the workflow can then
access this data through the EL function wf:actionData(String java-node-name),
which returns a map (EL functions are covered in “EL Functions” on page 88). The
following piece of code in the Java action generates some output shareable with
Oozie:

{
 File outputFile = new File(System.getProperty(
 "oozie.action.output.properties"));
 Properties outputProp = new Properties();
 outputProp.setProperty("OUTPUT_1", "007");

 OutputStream oStream = new FileOutputStream(outputFile);
 outputProp.store(oStream, "");
 oStream.close();
 System.out.println(outputFile.getAbsolutePath());
 }

The oozie.action.max.output.data property defined in oozie-
site.xml on the Oozie server node controls the maximum size of the
output data. It is set to 2,048 by default, but users can modify it to
suit their needs. This change will require a restart of the Oozie
server process.

The Java main class has to exit gracefully to help the Oozie workflow successfully
transition to the next action, or throw an exception to indicate failure and enable the
error transition. The Java main class must not call System.exit(int n), not even

54 | Chapter 4: Oozie Workflow Actions

exit(0). This is because of Oozie’s execution model and the launcher mapper pro‐
cess. It is this mapper that invokes the Java main class to run the Java action. An
exit() call will force the launcher mapper process to quit prematurely and Oozie will
consider that a failed action.

The Java action also builds a file named oozie-action.conf.xml and puts it in the run‐
ning directory of the Java class for it to access. Here is an example of a Java action:

 ...
 <action>
 <java>
 <job-tracker>localhost:8032</job-tracker>
 <name-node>hdfs://localhost:8020</name-node>
 <prepare>
 <delete path="${myJavaActionOutput}"/>
 </prepare>
 <configuration>
 <property>
 <name>mapred.queue.name</name>
 <value>default</value>
 </property>
 </configuration>
 <main-class>org.apache.oozie.MyJavaMainClass</main-class>
 <java-opts>-DmyOpts</java-opts>
 <arg>argument1</arg>
 <arg>argument2</arg>
 <capture-output/>
 </java>
 </action>
...

You will see that a lot of the XML elements become repetitive
across actions now that we have seen the <map-reduce> and <java>
action. Settings like <name-node>, <job-tracker>, and <queue> are
required by most actions and are typically the same across a work‐
flow or even many workflows. You can just cut and paste them
across actions or centralize them using some approaches that we
will see in the next chapter.

Java example
Let’s look at an example of how a Hadoop job is converted into a custom Oozie Java
action. The example below is the same MapReduce job that we saw in “MapReduce
example” on page 50, but we will convert it into a <java> action here instead of the
<map-reduce> action:

$ hadoop jar /user/joe/myApp.jar myAppClass
 -Dmapred.job.reduce.memory.mb=8192 /hdfs/user/joe/input
 /hdfs/user/joe/output prod

Action Types | 55

The complete Java action definition is shown here:
<action name="myJavaAction">
 <java>
 <job-tracker>jt.mycompany.com:8032</job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020</name-node>
 <prepare>
 <delete path="hdfs://nn.mycompany.com:8020/hdfs/user/joe/output"/>
 </prepare>
 <main-class>myAppClass</main-class>
 <arg>-D</arg>
 <arg>mapreduce.reduce.memory.mb=8192</arg>
 <arg>hdfs://nn.mycompany.com:8020/hdfs/user/joe/input</arg>
 <arg>hdfs://nn.mycompany.com:8020/hdfs/user/joe/output</arg>
 <arg>prod</arg>
 <file>myApp.jar#myApp.jar</file>
 <capture-output/>
 </java>
 <ok to="success"/>
 <error to="fail"/>
</action>

It’s customary and useful to set oozie.use.system.libpath=true
in the job.properties file for a lot of the actions to find the required
jars and work seamlessly. We cover library management in detail in
“Managing Libraries in Oozie” on page 147.

Pig Action
Oozie’s Pig action runs a Pig job in Hadoop. Pig is a popular tool to run Hadoop jobs
via a procedural language interface called Pig Latin. The Pig framework translates the
Pig scripts into MapReduce jobs for Hadoop (refer to the Apache Pig documentation
for more details). Pig action requires you to bundle the Pig script with all the neces‐
sary parameters. Here’s the full list of XML elements:

• scrjob-tracker (required)
• name-node (required)
• prepare

• job-xml

• configuration

• script (required)
• param

• argument

• file

56 | Chapter 4: Oozie Workflow Actions

http://pig.apache.org/docs/r0.12.1/

• archive

The following is an example of a Pig action with the Pig script, parameters, and argu‐
ments. We will look at Oozie’s variable substitution in detail in “Parameterization” on
page 86, but the script can be parameterized in Pig itself because Pig supports variable
substitution as well. The values for these variables can be defined as <argument> in
the action. Oozie does its parameterization before submitting the script to Pig, and
this is different from the parameterization support inside Pig. It’s important to under‐
stand the two levels of parameterization. Let’s look at an example:

...
 <action name=" myPigAction">
 <pig>
 ...
 <script>/mypigscript.pig</script>
 <argument>-param</argument>
 <argument>TempDir=${tempJobDir}</argument>
 <argument>-param</argument>
 <argument>INPUT=${inputDir}</argument>
 <argument>-param</argument>
 <argument>OUTPUT=${outputDir}/my-pig-output</argument>
 </pig>
 </action>
 ...

Oozie will replace ${tempJobDir}, ${inputDir}, and ${outputDir} before submis‐
sion to Pig. And then Pig will do its variable substitution for TempDir, INPUT, and
OUTPUT which will be referred inside the Pig script as $TempDir, $INPUT, and $OUTPUT
respectively (refer to the parameterization section in the Apache Pig documentation
for more details).

The argument in the example above, -param INPUT=${inputDir},
tells Pig to replace $INPUT in the Pig script and could have also
been expressed as <param>INPUT=${inputDir}</param> in the
action. Oozie’s Pig action supports a <param> element, but it’s an
older style of writing Pig actions and is not recommended in newer
versions, though it is still supported.

Pig example
Let’s look at a specific example of how a real-life Pig job is run on the command line
and convert it into an Oozie action definition. Here’s an example of a simple Pig
script:

REGISTER myudfs.jar;
data = LOAD '/user/joe/pig/input/data.txt' USING PigStorage(',') AS
 (user, age, salary);
filtered_data = FILTER data BY age > $age;

Action Types | 57

http://bit.ly/oozie-parameter

ordered_data = ORDER filtered_data BY salary;
final_data = FOREACH ordered_data GENERATE (user, age,
 myudfs.multiply_salary(salary));
STORE final_data INTO '$output' USING PigStorage();

It is common for Pig scripts to use user-defined functions (UDFs) through custom
JARs. In the preceding example, there is a Java UDF JAR file (myudfs.jar) on the local
filesystem. The JAR is first registered using the REGISTER statement in Pig before
using the UDF multiply_salary() (refer to the Pig documentation on how to write,
build, and package the UDFs; we will only cover how to use it via Oozie here).

This Pig script is also parameterized using variables—$age and $ouput. This is typi‐
cally run in Pig using the following command (this invocation substitutes these two
variables using the -param option to Pig):

$ pig -Dmapreduce.job.queuename=research -f pig.script -param age=30
 -param output=hdfs://nn.mycompany.com:8020/hdfs/user/joe/pig/output

We will now see an example Oozie Pig action to run this Pig script. The easiest way to
use the UDF in Oozie is to copy the myudfs.jar file to the lib/ subdirectory under the
workflow root directory on HDFS. You can then remove the REGISTER statement in
the Pig script before copying it to HDFS for the Oozie action to run it. Oozie will
automatically add the JAR to the classpath and the Pig action will have no problem
finding the JAR or the UDF even without the REGISTER statement:

<action name="myPigAction">
 <pig>
 <job-tracker>jt.mycompany.com:8032</job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020</name-node>
 <prepare>
 <delete path="hdfs://nn.mycompany.com:8020/hdfs/user/
 joe/pig/output"/>
 </prepare>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>research</value>
 </property>
 </configuration>
 <script>pig.script</script>
 <argument>-param</argument>
 <argument>age=30</argument>
 <argument>-param</argument>
 <argument>output=hdfs://nn.mycompany.com:8020/hdfs/user/
 joe/pig/output</argument>
 </pig>
 <ok to="end"/>
 <error to="fail"/>
</action>

58 | Chapter 4: Oozie Workflow Actions

http://bit.ly/oozie-pig-udf

There are multiple ways to use UDFs and custom JARs in Pig
through Oozie. The UDF code can be distributed via the
<archive> and <file> elements, as always, but copying it to the
lib/ subdirectory is the easiest and most straightforward approach.

FS Action
Users can run HDFS commands using Oozie’s FS action. Not all HDFS commands
are supported, but the following common operations are allowed: delete, mkdir,
move, chmod, <touchz>, chgrp. The elements that make up the FS action are as
follows:

• name-node (required)
• job-xml

• configuration

• delete

• mkdir

• move

• chmod

• touchz

• chgrp

FS action commands are launched by Oozie on its server instead of
the launcher. This is something to keep in mind, because a long-
running, resource-intensive FS action can affect the performance
of the Oozie server and impact other Oozie applications. This is
also the reason why not all HDFS commands (e.g., copy) are sup‐
ported through this action.

Here’s an example of an FS action in a real workflow:
...
 <action name="myFSAction">
 <fs>
 <delete path='hdfs://foo:8020/usr/joe/temp-data'/>
 <mkdir path='myDir/${wf:id()}'/>
 <move source='${jobInput}' target='myDir/${wf:id()}/input'/>
 <chmod path='${jobOutput}' permissions='-rwxrw-rw-'
 dir-files='true'/>
 </fs>

Action Types | 59

 </action>
...

Depending on the operation, Oozie will check to make sure source directories exist
and target directories don’t to reduce the chance of failure of the HDFS commands.
To be more specific, Oozie checks for the following:

• Existence of the path for <delete>, <chmod>, and <chgrp>.
• The existence of the source path for the <move> command.
• The nonexistence of the target file path for the <move> (existence of a directory

path is fine).
• The nonexistence of the path for the <mkdir> and touchz>.

Both move and chmod use the same conventions as typical Unix operations. For move,
the existence of the target path is fine if it’s a directory because the move will drop the
source files or the source directory underneath this target directory. However, the tar‐
get can’t be a path of an existing file. The parent of the target path must exist. The
target for the move can also skip the filesystem URI (e.g., hdfs://{nameNode}) because
the source and the target Hadoop cluster must be the same.

Permissions for chmod are specified using the Unix symbolic representation (e.g.,
-rwxrw-rw-) or an octal representation (755). When doing a chmod command on a
directory, by default the command is applied to the directory and the files one level
within the directory. To apply the chmod command to the directory, without affecting
the files within it, the dir-files attribute must be set to false. You can also option‐
ally add a <recursive> element to chmod to change the permissions recursively in the
given directory.

Filesystem example
This is the easiest example to illustrate among all the Oozie actions. Imagine that we
want to do the following three simple filesystem tasks on HDFS: delete, mkdir, and
chmod. Let’s first see the command-line way of doing this (the example uses both the
hadoop and hdfs CLI tools, but they support the same functionality and are equiva‐
lent; the hdfs CLI is the recommended tool moving forward):

$ hadoop fs -rm -r /hdfs/user/joe/logs
$ hdfs dfs -mkdir /hdfs/user/joe/logs
$ hdfs dfs -chmod -R 755 /hdfs/user/joe/

This can be implemented using an Oozie FS action as shown here:
<action name="myFSAction">
 <fs>
 <name-node>hdfs://nn.mycompany.com:8020</name-node>
 <delete path='/hdfs/user/joe/logs'/>

60 | Chapter 4: Oozie Workflow Actions

 <mkdir path='/hdfs/user/joe/logs'/>
 <chmod path='/hdfs/user/joe/' permissions='755' dir-files='true'>
 <recursive/></chmod>
 </fs>
 <ok to="success"/>
 <error to="fail"/>
</action>

The entire action is not atomic. This means that if the <chmod>
command fails in this example, the action does not rollback the
<delete> and <mkdir> commands that happened just prior to that.
So it’s important to handle the cleanup and reset if you want to
rerun the action in its entirety.

Sub-Workflow Action
The sub-workflow action runs a child workflow as part of the parent workflow. You
can think of it as an embedded workflow. From a parent’s perspective, this is a single
action and it will proceed to the next action in its workflow if and only if the sub-
workflow is done in its entirety. The child and the parent have to run in the same
Oozie system and the child workflow application has to be deployed in that Oozie
system:

• app-path (required)
• propagate-configuration

• configuration

The properties for the sub-workflow are defined in the <configuration> section. The
<propagate_configuration> element can also be optionally used to tell Oozie to
pass the parent’s job configuration to the sub-workflow. Note that this is to propagate
the job configuration (job.properties file). The following is an example of a simple but
complete <sub-workflow> action:

<action name="mySubWorkflow">
 <sub-workflow>
 <app-path>hdfs://nn.mycompany.com:8020/hdfs/user/joe/
 sub_workflow</app-path>
 <propagate-configuration/>
 </sub-workflow>
 <ok to="success"/>
 <error to="fail"/>
</action>

Action Types | 61

Hive Action
Hive actions run a Hive query on the cluster and are not very different from the Pig
actions as far as Oozie is concerned. Hive is a SQL-like interface for Hadoop and is
probably the most popular tool to interact with the data on Hadoop today (refer to
the Apache Hive documentation for more information). The Hive query and the
required configuration, libraries, and code for user-defined functions have to be
packaged as part of the workflow bundle and deployed to HDFS:

• job-tracker (required)
• name-node (required)
• prepare

• job-xml

• configuration

• script (required)
• param

• argument

• file

• archive

Hive requires certain key configuration properties, like the location of its metastore
(hive.metastore.uris), which are typically part of the hive-site.xml. These proper‐
ties have to be passed in as configuration to Oozie’s Hive action.

One common shortcut people take for Hive actions is to pass in a
copy of the hive-site.xml from the Hive client node (edge node) as
the <job-xml> element. This way, the hive-site.xml is just reused in
its entirety and no additional configuration settings or special files
are necessary. This is an overkill and considered a little lazy, but it
works most of the time.
Be careful with any directory and file path settings copied or bor‐
rowed from the hive-site.xml file, because the directory layout on
the edge node and the Hadoop worker nodes may not be the same
and you might hit some filesystem and permission errors.

The script element points to the actual Hive script to be run with the <param> ele‐
ments used to pass the parameters to the script. Hive supports variable substitution
similar to Pig, as explained in “Pig Action” on page 56. The same rules from the Pig
action apply here as far as using the <argument> element instead of the old-style

62 | Chapter 4: Oozie Workflow Actions

http://bit.ly/oozie-hive

<param> element and also understanding the two levels of parameterization with
Oozie and Hive. Here’s a simple example:

...
 <action name=" myHiveAction ">
 <hive>
 ...
 <script>myscript.sql</script>
 <argument>-hivevar</argument>
 <argument>InputDir=/home/joe/input-data</argument>
 <argument>-hivevar</argument>
 <argument>OutputDir=${jobOutput}</argument>
 </hive>
 </action>
...

Hive example
Let’s look at an example of how a real-life Hive job is run on the command line. The
following is a simple Hive query saved in a file called hive.hql. This query also uses a
UDF from the JAR file /tmp/HiveSwarm-1.0-SNAPSHOT.jar on the local filesystem.
The Hive statement ADD JAR is invoked before using the UDF dayofweek() (refer to
the Hive documentation for information on Hive UDFs; we will just see how to run it
in Oozie here):

ADD JAR /tmp/HiveSwarm-1.0-SNAPSHOT.jar;
create temporary function dayofweek as 'com.livingsocial.hive.udf.DayOfWeek';
select *, dayofweek(to_date('2014-05-02')) from test_table
 where age>${age} order by name;

This Hive query is also parameterized using the variable $age. This is typically run in
Hive using the following command line (this invocation substitutes the variable using
the -hivevar option):

$ hive -hivevar age=30 -f hive.hql

We will now see a Hive action to operationalize this example in Oozie. As with Pig
UDFs, copy the JAR file (HiveSwarm-1.0-SNAPSHOT.jar) to the lib/ subdirectory
under the workflow root directory on HDFS. You can then remove the ADD JAR state‐
ment in the Hive query before copying it to HDFS for the Oozie action to run it.
Oozie will automatically add the JAR to the classpath and the Hive action will have no
problem finding the JAR or the UDF even without the ADD JAR statement. Alterna‐
tively, the UDF code can be distributed via the <archive> and <file> elements as
well, but that will involve more work:

<action name="myHiveAction">
 <hive>
 <job-tracker>jt.mycompany.com:8032</job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020</name-node>
 <job-xml>hive-config.xml</job-xml>

Action Types | 63

http://bit.ly/oozie-hive-udf

 <script>hive.hql</script>
 <argument>-hivevar</argument>
 <argument>age=30</argument>
 </hive>
 <ok to="success"/>
 <error to="fail"/>
</action>

The hive-config.xml file in the example needs to be on HDFS in the workflow root
directory along with the Oozie workflow XML and the hive.hql file. The config file
can be a simple copy of the entire hive-site.xml or a file with a subset of the Hive con‐
figuration handcrafted for the specific query.

In older versions of Oozie and Hive, we could use the
oozie.hive.defaults configuration property to pass in the default
settings for Hive. This setting no longer works with newer versions
of Oozie (as of Oozie 3.4) and will be ignored even if present in the
workflow XML file. You should use the <job-xml> element instead
to pass the settings.

DistCp Action
DistCp action supports the Hadoop distributed copy tool, which is typically used to
copy data across Hadoop clusters. Users can use it to copy data within the same clus‐
ter as well, and to move data between Amazon S3 and Hadoop clusters (refer to the
Hadoop DistCp documentation for more details).

Here are the elements required to define this action:

• job-tracker (required)
• name-node (required)
• prepare

• configuration

• java-opts

• arg

Here is an example of a DistCp action:
 <action name=" myDistCpAction ">
 <distcp>
 ...
 <arg> hdfs://localhost:8020/path/to/input.txt</arg>
 <arg>${nameNode2}/path/to/output.txt</arg>
 </distcp>
 </action>

64 | Chapter 4: Oozie Workflow Actions

http://bit.ly/oozie-hadoop-distcp

The first argument passed in via the <arg> element points to the URI for the full path
for the source data and the second <arg> corresponds to the full path URI for the tar‐
get for the distributed copy. Do note the different NameNodes.

The following configuration property is required if the DistCp is
copying data between two secure Hadoop clusters:

oozie.launcher.mapreduce.job.hdfs-servers

The DistCp action might not work very well if the two clusters are
running different Hadoop versions or if they are running secure
and nonsecure Hadoop. There are ways to make it work by using
the WebHDFS protocol and setting some special configuration set‐
tings for Hadoop. Those details about DistCp are beyond the scope
of this book, but it’s fairly straightforward to implement them in
Oozie if you want to research and incorporate those tricks and tips.

DistCp Example
Let’s look at a specific example of how a real-life DistCp job is run on the command
line and convert it into an Oozie action definition. The following is an example of a
typical DistCp command:

$ /opt/hadoop/bin/hadoop distcp -m 100 s3n://my-logfiles/2014-04-15/*
 /hdfs/user/joe/logs/2014-04-15/

This example copies data from an Amazon S3 bucket to the local Hadoop cluster,
which is a common usage pattern. Copying from one Hadoop cluster to another fol‐
lows the same concepts. This DistCp is configured to run 100 mappers through the
-m=100 option.

Let’s convert this command line example to an Oozie action:
<action name="myDistcpAction">
 <distcp xmlns="uri:oozie:distcp-action:0.1">
 <job-tracker>jt.mycompany.com:8032</job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020</name-node>
 <prepare>
 <delete path="hdfs://nn.mycompany.com:8020/hdfs/user/joe/
 logs/2014-04-15/"/>
 </prepare>
 <arg>-Dfs.s3n.awsAccessKeyId=XXXX</arg>
 <arg>-Dfs.s3n.awsSecretAccessKey=YYYY</arg>
 <arg>-m</arg>
 <arg>100</arg>
 <arg>s3n://my-logfiles/2014-04-15/*</arg>
 <arg>/hdfs/user/joe/logs/2014-04-15/</arg>
 </distcp>
 <ok to="success"/>

Action Types | 65

http://bit.ly/oozie-webhdfs

 <error to="fail"/>
</action>

As you can see, the <distcp> action definition in Oozie has the Amazon (AWS)
access key and secret key, while the command-line example does not. This is because
the AWS keys are typically saved as part of the Hadoop core-site.xml configuration file
on the edge node where the DistCp command line is invoked. But they need to be
defined explicitly in the Oozie action either through the -D option, the <job-xml> file,
or the configuration section because those keys need to be propagated to the launcher
job running on one of the nodes, which may or may not have the same Hadoop con‐
figuration files as the edge node.

The DistCp command-line example shown here assumes the keys
are in the Hadoop core-site.xml file. Also, the keys in the Oozie
example are obviously fake. There is another way to pass in the
AWS keys by embedding them in the s3n URI itself using the syn‐
tax s3n://ID:SECRET@BUCKET (refer to the Hadoop documentation
for more details; Oozie supports this syntax as well).

Email Action
Sometimes there is a need to send emails from a workflow application. It might be to
notify users about the state of the workflow or error messages or whatever the busi‐
ness need dictates. Oozie’s email action provides an easy way to integrate this feature
into the workflow. It takes the usual email parameters: to, cc, subject, and body.
Email IDs of multiple recipients can be comma separated.

The following elements are part of this action:

• to (required)
• cc

• subject (required)
• body (required)

This is one of the few actions that runs on the Oozie server and not through an Oozie
launcher on one of the Hadoop nodes. The assumption here is that the Oozie server
node has the necessary SMTP email client installed and configured, and can send
emails. In addition, the following SMTP server configuration has to be defined in the
oozie-site.xml file for this action to work:

• oozie.email.smtp.host (default: localhost)
• oozie.email.smtp.port (default: 25)
• oozie.email.from.address (default: oozie@localhost)

66 | Chapter 4: Oozie Workflow Actions

https://wiki.apache.org/hadoop/AmazonS3
http://cr.yp.to/smtp.html

• oozie.email.smtp.auth (default: false)
• oozie.email.smtp.username (default: empty)
• oozie.email.smtp.password (default: empty)

Here is an example of an email action:
...
 <action name=" myEmailAction ">
 <email>
 <to>joe@initech.com,the_other_joe@initech.com</to>
 <cc>john@initech.com</cc>
 <subject>Email notifications for ${wf:id()}</subject>
 <body>The wf ${wf:id()} successfully completed.</body>
 </email>
 </action>
...

Shell Action
Oozie provides a convenient way to run any shell command. This could be Unix
commands, Perl/Python scripts, or even Java programs invoked through the Unix
shell. The shell command runs on an arbitrary Hadoop cluster node and the com‐
mands being run have to be available locally on that node. It’s important to keep the
following limitations and characteristics in mind while using the <shell> action:

• Interactive commands are not allowed.
• You can’t run sudo or run as another user.
• Because the shell command runs on any Hadoop node, you need to be aware of

the path of the binary on these nodes. The executable has to be either available
on the node or copied by the action via the distributed cache using the <file>
tag. For the binaries on the node that are not copied via the cache, it’s perhaps
safer and easier to debug if you always use an absolute path.

• It’s not unusual for different nodes in a Hadoop cluster to be running different
versions of certain tools or even the operating system. So be aware that the tools
on these nodes could have slightly different options, interfaces, and behaviors.
While built-in shell commands like grep and ls will probably work fine in most
cases, other binaries could either be missing, be at different locations, or have
slightly different behaviors depending on which node they run on.

• On a nonsecure Hadoop cluster, the shell command will execute as the Unix user
who runs the TaskTracker (Hadoop 1) or the YARN container (Hadoop 2). This is
typically a system-defined user. On secure Hadoop clusters running Kerberos,

Action Types | 67

the shell commands will run as the Unix user who submitted the workflow con‐
taining the <shell> action.

The elements that make up this action are as follows:

• job-tracker (required)
• name-node (required)
• prepare

• job-xml

• configuration

• exec (required)
• argument

• env-var

• file

• archive

• capture-output

The <exec> element has the actual shell command with the arguments passed in
through the <argument> elements. If the excutable is a script instead of a standard
Unix command, the script needs to be copied to the workflow root directory on
HDFS and defined via the <file> element as always. The <shell> action also
includes an <env-var> element that contains the Unix environment variable, and it’s
defined using the standard Unix syntax (e.g., PATH=$PATH:my_path).

Be careful not to use the ${VARIABLE} syntax for the environment
variables, as those variables will be replaced by Oozie.

This action also adds a special environment variable called OOZIE_ACTION_CONF_XML,
which has the path to the Hadoop configuration file that Oozie creates and drops in
the <shell> action’s running directory. This environment variable can be used in the
script to access the configuration file if needed.

Just like Java action, if the <capture_output> element is present here, Oozie will cap‐
ture the output of the shell command and make it available to the workflow applica‐
tion. This can then be accessed by the workflow through the action:output() EL
function. The one difference between the <java> action and <shell> action is that
Oozie captures the stdout of the <shell> action whereas with the Java action, the

68 | Chapter 4: Oozie Workflow Actions

program has to write the output to a file (oozie.action.output.properties). Here
is a typical <shell> action:

...
 <action name=" myShellAction ">
 <shell>
 ...
 <exec>${EXEC}</exec>
 <argument>A</argument>
 <argument>B</argument>
 <file>${EXEC}#${EXEC}</file>
 </shell>
 </action>
...

While Oozie does run the shell command on a Hadoop node, it
runs it via the launcher job. It does not invoke another MapReduce
job to accomplish this task.

Shell example
Let’s say there is a Python script that takes today’s date as one of the arguments and
does some basic processing. Let’s assume it also requires an environment variable
named TZ to set the time zone. This is how you will run it on the shell command line:

$ export TZ=PST
$ python test.py 07/21/2014

Let’s convert this example to an Oozie <shell> action:
<action name="myShellAction">
 <shell xmlns="uri:oozie:shell-action:0.2">
 <job-tracker>jt.mycompany.com:8032</job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020</name-node>
 <exec>/usr/bin/python</exec>
 <argument>test.py</argument>
 <argument>07/21/2014/argument>
 <env-var>TZ=PST</env-var>
 <file>test.py#test.py</file>
 <capture-output/>
 </shell>
 <ok to="success"/>
 <error to="fail"/>
</action>

Action Types | 69

Users often use the Python Virtual Environment and distribute it
via the Hadoop distributed cache using the <archive> element.
This is a nice and self-contained approach to isolate your Python
environment from what’s available on the node and also to make
sure you have access to all the packages your job needs.

SSH Action
The <ssh> action runs a shell command on a specific remote host using a secure
shell. The command should be available in the path on the remote machine and it
is executed in the user’s home directory on the remote machine. The shell command
can be run as another user on the remote host from the one running the workflow.
We can do this using typical ssh syntax: user@host. However, the
oozie.action.ssh.allow.user.at.host should be set to true in oozie-site.xml for
this to be enabled. By default, this variable is false. Here are the elements of an <ssh>
action:

• host (required)
• command (required)
• args

• arg

• capture-output

The <command> element has the actual command to be run on the remote host and
the <args> element has the arguments for the command. Either <arg> or <args> can
be used in the action, but not both. The difference between the two is as follows. If
there is a space in the <args>, it will be handled as separate arguments, while <arg>
will handle each value as one argument. The <arg> element was basically introduced
to handle arguments with white spaces in them. Here is an example <ssh> action:

...
 <action name=" mySSHAction ">
 <ssh>
 <host>foo@bar.com<host>
 <command>uploaddata</command>
 <args>jdbc:derby://bar.com:1527/myDB</args>
 <args>hdfs://foobar.com:8020/usr/joe/myData</args>
 </ssh>
 </action>
...

70 | Chapter 4: Oozie Workflow Actions

http://bit.ly/oozie-virtualenv

It’s important to understand the difference between the <ssh>
action and the <shell> action. The <shell> action can be used to
run shell commands or some custom scripts on one of the Hadoop
nodes. The <ssh> action can be used to run similar commands, but
it’s meant to be run on some remote node that’s not part of the
Hadoop cluster. Also, the <shell> action runs through an Oozie
launcher while the <ssh> action is initiated from the Oozie server.

Sqoop Action
Apache Sqoop is a Hadoop tool used for importing and exporting data between rela‐
tional databases (MySQL, Oracle, etc.) and Hadoop clusters. Sqoop commands are
structured around connecting to and importing or exporting data from various rela‐
tional databases. It often uses JDBC to talk to these external database systems (refer to
the documentation on Apache Sqoop for more details). Oozie’s sqoop action helps
users run Sqoop jobs as part of the workflow.

The following elements are part of the Sqoop action:

• job-tracker (required)
• name-node (required)
• prepare

• job-xml

• configuration

• command (required if arg is not used)
• arg (required if command is not used)
• file

• archive

The arguments to Sqoop are sent either through the <command> element in one line or
broken down into many <arg> elements. The following example shows a typical
usage:

...
 <action name=" mySqoopAction ">
 <sqoop>
 ...
 <command>import --connect jdbc:hsqldb:file:db.hsqldb --table
 test_table--target-dir hdfs://localhost:8020/user/joe/sqoop_tbl
 -m 1</command>
 </sqoop>
 </action>
...

Action Types | 71

http://bit.ly/oozie-sqoop

Sqoop example
Let’s look at an example of an import from a MySQL database into HDFS using the
Sqoop command line. We are using Sqoop version 1.4.5 here. Also known as Sqoop 1,
it is a lot more popular than the newer Sqoop 2 at this time. The command shown
here is connecting to a MySQL database called MY_DB and importing all the data from
the table test_table. The output is written to the HDFS directory /hdfs/joe/sqoop/
output-data and this Sqoop job runs just one mapper on the Hadoop cluster to
accomplish this import. Here’s the actual command line:

$ /opt/sqoop-1.4.5/bin/sqoop import --connect jdbc:mysql://mysqlhost.mycompany
.com/MY_DB --table test_table -username mytestsqoop -password password
--target-dir /hdfs/joe/sqoop/output-data -m 1

Example 4-3 converts this command line to an Oozie sqoop action:

Example 4-3. Sqoop import

<action name="sqoop-import">
 <sqoop xmlns="uri:oozie:sqoop-action:0.2">
 <job-tracker>jt.mycompany.com:8032$lt;/job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020$lt;/name-node>
 <prepare>
 <delete path=" hdfs://nn.mycompany.com:8020/hdfs/joe/sqoop/
 output-data"/>
 </prepare>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>default</value>
 </property>
 </configuration>
 <command>import --connect jdbc:mysql://mysqlhost.mycompany.com/MY_DB
 --table test_table -username mytestsqoop -password password
 --target-dir /user/alti-test-01/ara/output-data/sqoop -m 1</command>
 </sqoop>
 <ok to="end"/>
 <error to="fail"/>
 </action>

The Sqoop eval option runs any random and valid SQL statement
on the target (relational) DB and returns the results. This com‐
mand does not run a MapReduce job on the Hadoop side and this
caused some issues for Oozie. The eval option via the Oozie
<sqoop> action used to fail. This bug has been fixed in Oozie ver‐
sion 4.1.0 and it now supports the eval option as well.

72 | Chapter 4: Oozie Workflow Actions

Let’s see another example using the <arg> element instead of the <command> element
in the <sqoop> action. Example 4-4 shows how to run a Sqoop eval in Oozie 4.1.0:

Example 4-4. Sqoop eval

 <action name="ara_sqoop_eval">
 <sqoop xmlns="uri:oozie:sqoop-action:0.2">
 <job-tracker>jt.mycompany.com:8032$lt;/job-tracker>
 <name-node>hdfs://nn.mycompany.com:8020$lt;/name-node>
 <arg>eval</arg>
 <arg>--connect</arg>
 <arg>jdbc:mysql://mysqlhost.mycompany.com/MY_DB</arg>
 <arg>--username</arg>
 <arg>mytestsqoop</arg>
 <arg>--password</arg>
 <arg>password</arg>
 <arg>-e</arg>
 <arg>SELECT count(*) FROM test_table</arg>
 </sqoop>
 <ok to="end"/>
 <error to="fail"/>
 </action>

The example shows the username and password in clear text just
for convenience. This is not the recommended way to pass them
via Oozie. These values are usually parameterized using variables
and saved in a secure fashion.

Synchronous Versus Asynchronous Actions
All Hadoop actions and the <shell> action follow the “Action Execution Model” on
page 40. These are called asynchronous actions because they are launched via a
launcher as Hadoop jobs. But the filesystem action, email action, SSH action, and
sub-workflow action are executed by the Oozie server itself and are called synchro‐
nous actions. The execution of these synchronous actions do not require running any
user code—just access to some libraries.

Synchronous Versus Asynchronous Actions | 73

As seen earlier, the Oozie filesystem action performs lightweight
filesystem operations not involving data transfers and is executed
by the Oozie server itself. The email action sends emails; this is
done directly by the Oozie server via an SMTP server. The sub-
workflow action is executed by the Oozie server also, but it just
submits a new workflow. The SSH action makes Oozie invoke a
secure shell on a remote machine, though the actual shell com‐
mand itself does not run on the Oozie server. These actions are all
relatively lightweight and hence safe to be run synchronously on
the Oozie server machine itself.

Table 4-1 captures the execution modes for the different action types.

Table 4-1. Action
modes

Action Type

MapReduce Asynchronous

Java Asynchronous

Pig Asynchronous

Filesystem Synchronous

Sub-Workflow Synchronous

Hive Asynchronous

DistCp Asynchronous

Email Synchronous

Shell Asynchronous

SSH Synchronous

Sqoop Asynchronous

This wraps up the explanation of all action types that Oozie supports out of the box.
In this chapter, we learned about all the details and intricacies of writing and packag‐
ing the different kinds of action types that can be used in a workflow. We will cover
parameterization and other advanced workflow topics in detail in Chapter 5.

74 | Chapter 4: Oozie Workflow Actions

http://bit.ly/oozie-smtp
http://bit.ly/oozie-secureshell-def

CHAPTER 5

Workflow Applications

We learned about action types, the basic building blocks of an Oozie workflow, in the
last chapter. In this chapter, we will get into the various aspects of authoring a com‐
plete workflow application comprised of those actions. We will learn all the tricks and
techniques, like parameterization and variable substitution, that come in handy when
assembling actions into a functional workflow. We will also see how to manage and
drive the control flow among those actions.

Outline of a Basic Workflow
As we have already seen, workflows are defined in an XML file that is typically named
workflow.xml. Example 5-1 shows an outline of a typical Oozie workflow XML, which
captures some of the relevant components and the most common sections.

Example 5-1. Outline of a basic workflow

<workflow-app xmlns="uri:oozie:workflow:0.5" name="simpleWF">
 <global>
 ...
 </global>
 <start to="echoA"/>
 <action name="echoA">
 <shell xmlns="uri:oozie:shell-action:0.2">
 ...
 </shell>
 <ok to="echoB"/>
 <error to="done"/>
 </action>
 <action name="echoB">
 <shell xmlns="uri:oozie:shell-action:0.2">
 ...
 </shell>

75

 <ok to="done"/>
 <error to="done"/>
</action>
 <end name="done"/>
</workflow-app>

At the very beginning of the XML is the <workflow-app> root element with an xmlns
and a name attribute specifying the name of the workflow application.

Oozie performs XML schema validation on all XML files used to
define workflows, coordinators, and bundles. So you must specify a
schema URI (the xmlns attribute in the root element). Oozie
schemas have evolved and newer versions have been introduced.
While Oozie supports older schemas, it is recommended to always
use the latest schema, as it supports the latest Oozie features. Older
schemas will eventually be deprecated in newer versions of Oozie.

The workflow name must be a word consisting of any combination of letters, num‐
bers, underscores (_), and dashes (-). Within this <workflow-app> element, the com‐
plete workflow application is defined. As you can see, the following sections are
captured in Example 5-1:

• Global configuration

• Control nodes

• Action nodes

The action nodes in the example shown here are represented as
simple <shell> actions meant only to echo something on the
screen. Real workflows will have real actions, mostly Hadoop
actions that we covered in the last chapter. We will go with <shell>
actions here for simplicity. When users start writing their first
Oozie workflows, it’s a good idea to start small with something like
a one-line <shell> action and expand from there.

First, we cover the control nodes in the next section. We look at configuration details
later in this chapter.

Control Nodes
Workflow control nodes define the start and end of a workflow and they define any
control changes in the execution flow. All nodes except for the <start> node have a

76 | Chapter 5: Workflow Applications

name attribute. Node names must be a valid Java identifier with a maximum length of
40 characters. Node names can also use dashes.

<start> and <end>
The <start> node is the starting point of a workflow. When Oozie starts a workflow,
it looks for the <start> node and transitions to the node specified in the to attribute.

The <end> node is the completion point of the workflow. When a workflow transi‐
tions to an <end> node, it completes its execution with a SUCCEEDED status.

The preceding workflow example has a <start> node that transitions to a <shell>
action echoA, then transitions to the <shell> action echoB, and then transitions to
the done <end> node, which ends the workflow successfully. This simple workflow is
captured in Figure 5-1.

Figure 5-1. Simple workflow example

<fork> and <join>
Simple workflows execute one action at a time. In the previous section, we saw that
the echoA action is executed first and the echoB action is not executed until after
echoA completes successfully.

When actions don’t depend on the result of each other, it is possible to execute
actions in parallel using the <fork> and <join> control nodes to speed up the execu‐
tion of the workflow.

When Oozie encounters a <fork> node in a workflow, it starts running all the paths
defined by the fork in parallel. These parallel execution paths run independent of
each other. All the paths of a <fork> node must converge into a <join> node. A
workflow does not proceed its execution beyond the <join> node until all execution
paths from the <fork> node reach the <join> node. Example 5-2 captures the
<fork>-<join> syntax.

Example 5-2. Workflow with <fork> and <join> control nodes

<workflow-app xmlns="uri:oozie:workflow:0.5" name="forkJoinNodeWF">
 <global>
 ...
 </global>

Control Nodes | 77

 <start to="forkActions"/>
 <fork name="forkActions">
 <path name="echoA"/>
 <path name="echoB"/>
 </fork>
 <action name="echoA">
 <shell xmlns="uri:oozie:shell-action:0.2">
 ...
 </shell>
 <ok to="joinActions"/>
 <error to="joinActions"/>
 </action>
 <action name="echoB">
 <shell xmlns="uri:oozie:shell-action:0.2">
 ...
 </shell>
 <ok to="joinActions"/>
 <error to="joinActions"/>
 </action>
 <join name="joinActions" to="done"/>
 <end name="done"/>
</workflow-app>

The <path> elements within the <fork> node define the parallel execution paths of
the <fork> node. Each <path> element indicates the first node in the parallel execu‐
tion path being created. In the example above, each parallel path happens to have
only one action node. But in reality, it could be a sequence of nodes. The last node of
each such execution path should transition to the <join> node.

It is possible to have nested <fork> and <join> nodes. The only constraint is that
<fork> and <join> nodes always go in pairs and all execution paths starting from a
given <fork> must end in the same <join> node. Figures 5-2 and 5-3 depict both
invalid and valid nesting of <fork> and <join> nodes.

78 | Chapter 5: Workflow Applications

Figure 5-2. Workflow with invalid nesting of <fork> and <join> nodes

Figure 5-3. Workflow with valid nesting of <fork> and <join> nodes

<decision>
In programming languages, if-then-else and switch-case statements are usually
used to control the flow of execution depending on certain conditions being met or

Control Nodes | 79

not. Similarly, Oozie workflows use <decision> nodes to determine the actual execu‐
tion path of a workflow.

A <decision> node behavior is best described as an if-then-else-if-then-else...
sequence, where the first predicate that resolves to true will determine the execution
path. Unlike a <fork> node where all execution paths are followed, only one execu‐
tion path will be followed in a <decision> node.

Figure 5-4 is a pictorial representation of a workflow that executes a MapReduce,
Hive, or Pig job (depending on the value of a workflow parameter).

Figure 5-4. Workflow with a <decision> node

The corresponding workflow XML definition is shown in Example 5-3.

Example 5-3. Workflow with a <decision> node

<workflow-app xmlns="uri:oozie:workflow:0.5" name="decisionNodeWF">
 <start to="decision"/>
 <decision name="decision">
 <switch>
 <case to="mapReduce">${jobType eq "mapReduce"}</case>
 <case to="hive">${jobType eq "hive"}</case>
 <case to="pig">${jobType eq "pig"}</case>
 <default to="mapReduce"/>
 </switch>
 </decision>
 <action name="mapReduce">
 ...
 <ok to="done"/>
 <error to="done"/>
 </action>
 <action name="hive">
 ...

80 | Chapter 5: Workflow Applications

 <ok to="done"/>
 <error to="done"/>
 </action>
 <action name="pig">
 ...
 <ok to="done"/>
 <error to="done"/>
 </action>
 <end name="done"/>
</workflow-app>

Each <case> element has a to attribute indicating the execution path to follow if the
content of the <case> element (${jobType eq "mapReduce"} in the example) evalu‐
ates to true. If none of the <case> contents evaluates to true, the execution path
specified by the <default to> attribute will be followed.

Expressions like ${jobType eq "mapReduce"} are explained in
detail in “EL Functions” on page 88.

<kill>
The <kill> node allows a workflow to kill itself. If any execution path of a workflow
reaches a <kill> node, Oozie will terminate the workflow immediately, failing all
running actions (it could be multiple running actions if the workflow execution is
currently within a <fork>-<join> block) and setting the completion status of the
workflow to KILLED. It is worth noting that Oozie will not explicitly kill the currently
running MapReduce jobs on the Hadoop cluster that corresponds to those actions.
They will be allowed to complete, though the action will be set to FAILED and no
downstream actions of those jobs in their respective <fork>-<join> block will be
run. Example 5-4 illustrates the use of a <kill> node.

Example 5-4. Workflow with a <kill> node

<workflow-app xmlns="uri:oozie:workflow:0.4" name="killNodeWF">
 <start to="mapReduce"/>
 <action name="mapReduce">
 ...
 <ok to="done"/>
 <error to="error"/>
 </action>
 <kill name="error">
 <message>The 'mapReduce' action failed!</message>
 <end name="done"/>
</workflow-app>

Control Nodes | 81

Using a <kill> node in a workflow is similar to doing a System.exit(1) (any non-
zero exit code) in Java. We have already seen in previous examples that action nodes
have two possible transitions: <ok> and <error>. Typically, <error> transitions to a
<kill> node indicating that something went wrong.

<OK> and <ERROR>
When an action completes, its status is typically in either OK or ERROR status depend‐
ing on whether or not the execution was successful. If an action ends in OK status, the
workflow execution path transitions to the node specified in the <ok> element. If the
action ends in ERROR status, the workflow execution path transitions to the node
specified in the <error> element. Even when the action exit status is ERROR, the work‐
flow still continues to execute. Typically, the node specified for transition in case of an
ERROR is the <kill> node, but it’s not required to be. In that case, the workflow will
stop running and it will end up in the KILLED.

If desired, you have the option to continue the workflow execution even in case of an
ERROR state for an action. There are legitimate reasons to continue running the work‐
flow even after an action ends with an error. For example, you might want to transi‐
tion to an <email> action on an error and send mails to a group of people before
actually failing the workflow. In some use cases, there might be expected errors that
can be handled and you may chose to transition to an action that cleans up or recov‐
ers some state and retries the failed action again. In short, just because an action
ended up in the ERROR state doesn’t mean the containing workflow also exits with an
error right away.

Figure 5-5 captures the typical flow of control from an action node.

Figure 5-5. Workflow action node

<OK> and <ERROR> nodes in a workflow are considered action
nodes, though they are funtionally different from the action worker
nodes we saw in the previous chapter. Also, there are several other
action states and we will see them in detail later in the chapter. But
for simplicity here, we will assume actions either end up in <OK> or
<ERROR>.

82 | Chapter 5: Workflow Applications

Job Configuration
As we have seen in the last chapter, there are several configuration settings that are
required for defining workflow actions, especially Hadoop actions. Oozie provides
multiple ways to specify them. It’s important to understand Oozie’s approach to con‐
figuration and parameterization if you want to become efficient at writing workflows.

Oozie’s workflow XML supports several elements for each action type and we looked
at these elements in detail in the previous chapter. For instance, every Hadoop job
needs a JobTracker and NameNode and Oozie supports the <name-node> and
<job-tracker> as top-level XML elements for all Hadoop action types. Most actions,
especially Hadoop actions, also support a <configuration> section where job config‐
urations can be defined. This can include system settings like
mapred.job.queue.name or can also be user-defined keys that they want to send to
the job.

Oozie provides multiple ways—some users may say too many ways—to pass in all of
these configuration settings to the workflow. Here are three ways in which configura‐
tion can be passed to the workflow actions, listed in order of increasing priority:

• Global configuration
• Job XML file(s) specified in <job-xml>
• Inline <configuration> section in workflow.xml

There is actually a fourth, rarely used way to predefine most of the
job configuration per action type, but it requires changing
the Oozie server settings. The following setting in oozie-site.xml
can be used to specify a set of configuration files:

oozie.service.HadoopAccessorService.
 action.configurations

Refer to the Oozie documentation for more details.

Global Configuration
Most actions in a workflow need several of the same settings (e.g., the JobTracker
URI, NameNode URI, Hadoop scheduler queue, etc.). Users can avoid repeating all
these settings and job configuration values in every action of the workflow by defin‐
ing them once in the workflow’s <global> section. The properties defined in the
<global> section are available to all actions of the workflow. The sample workflow we
saw in Example 5-1 introduced this <global> section, but Example 5-5 provides a
more detailed example. As you can see, this makes the individual action definitions
short and sweet.

Job Configuration | 83

http://bit.ly/oozie-default

Example 5-5. Global configuration for workflow applications

<workflow-app name="globalConfigurationWF" xmlns="uri:oozie:workflow:0.5">
 <global>
 <job-tracker>localhost:8032</job-tracker>
 <name-node>hdfs://localhost:8020</name-node>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>development</value>
 </property>
 </configuration>
 </global>

 <action>
 <java>
 <main-class>org.apache.oozie.MyJavaMainClass</main-class>
 <arg>argument1</arg>
 <capture-output/>
 </java>
 </action>
 ...
</workflow-app>

Make sure you are using the right schema version for both the
workflow and the specific action types when using the <global>
section. Workflow schema version 0.4 and above supports the
<global> section. In fact, schema version is always something to
check and verify when certain workflow features and syntax throw
errors.

Readers are strongly encouraged to use the <global> section liberally in their work‐
flows to reduce clutter and confusion.

Job XML
Most actions supports a <job-xml> element, which is specifically meant for passing in
Hadoop job configuration in XML format. This file has to be packaged with the
workflow app and deployed on HDFS. Different action nodes in the workflow can
include different job-xml file(s). With the later versions of the Oozie schema (ver‐
sion 0.4 and above), multiple <job-xml> elements are supported, which means that
an action can have multiple files packaged and made available with the job configura‐
tion information split across them. Example 5-6 shows multiple job XMLs listed for a
single action.

84 | Chapter 5: Workflow Applications

Example 5-6. Multiple job XML files

<map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <job-xml>/conf_A_job.xml</job-xml>
 <job-xml>/conf_B_job.xml</job-xml>
 <job-xml>/conf_C_job.xml</job-xml>
...

What happens if the same configuration property is defined in
multiple <job-xml> files? Settings from the later files in the list of
files override the earlier ones. In this example, if the property
mapred.queue.name is defined in all three job XML files, the value
in conf_C_job.xml will take precedence over the value in the first
two files.

Inline Configuration
Inline configuration in the body of the workflow action holds higher priority than the
<global> section and the <job-xml> files. Example 5-7 shows a <configuration>
section. The format and syntax are the same regardless of whether these properties
are defined in the body of the action in the workflow XML or in a separate job XML
file. It’s only the priority and precedence that will be different.

Example 5-7. Configuration properties

 <configuration>
 <property>
 <name>hive.metastore.local</name>
 <value>true</value>
 <description>controls whether to connect to a remote metastore
 server</description>
 </property>
 <property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:postgresql://localhost/hive</value>
 <description>JDBC connect string for a JDBC metastore</description>
 </property>
 </configuration>

Launcher Configuration
We saw in “Action Execution Model” on page 40 how the Oozie launcher job itself is a
MapReduce job. You can specify the configuration settings for this launcher job in the
action by prefixing oozie.launcher to any Hadoop configuration property. This way,
you can override the default settings Oozie uses for the launcher job. Hadoop con‐

Job Configuration | 85

figuration properties like the job queue specified for the action are applied as defaults
to the launcher job as well. These defaults help keep the action definition short and
clean by avoiding specifying several redundant properties, but they can be explicitly
overridden using the oozie.launcher.* properties.

One of the common settings users change for the launcher is
oozie.launcher.mapred.job.queue.name to run it in a different
Hadoop queue from the actual action itself. This will help avoid the
deadlock situation explained in “Action Execution Model” on page
40.

Parameterization
Oozie applications are often parameterized at all levels: workflow, coordinator, and
bundle. Typically, the same workflow is often required to run in different contexts
and it’s too inefficient to modify the workflow and action definition for each of those
runs. For example, you might want to run the same workflow every day on a different
date partition of the same input dataset. You might do this through a coordinator
application or by using cron or may be even run it manually every day. In all of these
scenarios, you don’t want to have to modify the workflow.xml and update the HDFS
directory every day to run this job. It’s much more efficient to parameterize the work‐
flow using variables or functions than to hardcode everything.

This section explains configuration, parameterization, and EL
functions in the context of an Oozie workflow. But the concepts,
patterns, and techniques are exactly the same when it comes to
parameterization of Oozie coordinator and bundle applications
that we will come across in later chapters. Specific functions and
variables will be different, but the concept and methodology are the
same.

Oozie supports the JSP Expression Language syntax from the JSP 2.0 Specification for
parameterization. This allows Oozie to support variables, functions, and complex
expressions as parameters. We will see each one of them in detail below. Oozie’s
parameterization framework is extensible and we will cover how to add user-defined
EL functions in “Developing Custom EL Functions” on page 177. Do note that you
can’t just submit code for user-defined functions dynamically as part of a workflow at
runtime. It needs to be preconfigured and added to the Oozie system and requires a
server restart.

86 | Chapter 5: Workflow Applications

http://bit.ly/oozie-jspec

EL Variables
The most common technique for parameterization in Oozie is through EL variables.
Various settings like NameNode, JobTracker, Hadoop queue, application path, and the
date for the datasets can all be defined and parameterized using EL variables. We have
seen user-defined variables in a workflow as early as Example 1-1; this is reproduced
here:

<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>

The values for these user-defined variables ${jobTracker} and ${nameNode}) need to
be specified before the job submission. These variables are valid throughout the
entire life of the workflow.

EL constants and system-defined variables
In addition to user-defined variables, Oozie also provides a set of system-defined
variables and EL constants for your convenience. For example, KB, MB, GB, TB, and PB
are all predefined long integers representing KiloBytes, MegaBytes, GigaBytes, Tera‐
Bytes, and PetaBytes, respectively. These are EL constants. Oozie also supports vari‐
ables like ${YEAR}, ${MONTH}, and ${DAY} that you will use often in Oozie
coordinators. Think of them as system-defined variables. Unlike the user-defined
variables, system variables are evaluated during job execution. In some cases, the sys‐
tem variables have a predefined scope. In other words, those variables are valid only
in certain parts of the Oozie job specification. We will run across system-defined vari‐
ables in various contexts throughout the book.

Hadoop counters
It’s also very common to use Hadoop counters as parameters in a workflow. If
myMRNode is a MapReduce node in a workflow, the subsequent actions could refer to
its counters using the following syntax. It could use it as an action argument or make
some decisions based on it:

${hadoop:counters("myMRNode")["FileSystemCounters"]["FILE_BYTES_READ"]}

${hadoop:counters("myPigNode")["RECORD_WRITTEN"]}

There are system variables representing some of the common Hadoop counters:
RECORDS, MAP_IN, MAP_OUT, REDUCE_IN, and REDUCE_OUT. RECORDS is the Hadoop
counter group name and those other variables refer to the record’s in-and-out coun‐
ters for mappers and reducers. These variables refer to the counters from the particu‐
lar action and can come in handy when making decisions after the action’s processing
completes.

Parameterization | 87

EL Functions
Applications also have a need for handling dynamic values during runtime that can‐
not be statically defined through variables. For example, you may want to print the
workflow ID as part of some <shell> action. This ID is available only at runtime and
the developer had no way to specify the value when she was writing the workflow or
even when she was submitting it. This is where Oozie’s EL functions come in handy.
They are convenience functions that are available for a lot of common use cases. For
instance, Oozie has a wf:id() function that returns the ID of the current workflow
execution. The workflow can be parameterized using the ${FUNC} syntax ${wf:id()}
for this use case. While Oozie verifies the syntax of any function during job submis‐
sion, it eventually evaluates the functions during the workflow execution.

EL expressions can be used in all XML element values, all configu‐
ration values (for both action and decision nodes), and attribute
values. They cannot be used in a XML element name, attribute
name, node name, and within the transition elements of a node
(“ok to”, “error to”, etc.).

There are several built-in EL functions that Oozie supports and they are all listed in
the Oozie documentation. They are roughly classified as basic, Hadoop, HDFS, and
HCatalog functions and constants. We will now look at a few common and useful
ones.

String timestamp()
Current UTC time in W3C format up to seconds granularity; this takes the format
(YYYY-MM-DDThh:mm:ss.sZ) (e.g., a timestamp from July 17, 2014, taken around 5
p.m. looks like 2014-07-17T17:10:50.45Z).

String wf:id()
This is a useful workflow EL function that returns the job ID for the current work‐
flow job. This is often useful in reporting and printing status messages.

String wf:errorCode(String node)
Given a node name, this EL function returns the error code or an empty string if the
action node did not exit with an error. Each type of action node must define its com‐
plete error code list, which the standard actions do anyways. It’s something to keep in
mind if you are writing your own custom action. This function is very useful in error
reporting as well as in transition nodes and decision nodes where you may want to
take different courses of action in the workflow depending on errors and error types.

88 | Chapter 5: Workflow Applications

http://bit.ly/oozie-el-functions

boolean fs:fileSize(String path)
This is an HDFS EL function that returns the size in bytes of the specified file. If the
path is not a file, or if it does not exist, it returns -1.

The preferred syntax for Oozie variables is ${VAR}. But this only
works for variable names that follow Java naming conventions.
There is another way to specify these variables and that’s by using
the {wf:conf('VAR')} function. If a variable name has spaces or
dots, wf:conf() is the way to go. Some users prefer this because it’s
consistent with the syntax for EL functions while most users like
the ${VAR} syntax because it’s simpler and also helps differentiate
between variables and functions.

EL Expressions
In addition to the EL variables and functions, EL expressions are supported as well. A
common use case for this is the decision nodes in a workflow. It’s not uncommon to
check the output of the previous action against some condition and branch the work‐
flow based on that. But that’s not the only use for EL expressions and they can be used
wherever the EL variables and functions are supported. Example 5-3 illustrates the
use of EL expressions in the context of a decision node.

As you can see, EL variable, function, and expression substitution are a very powerful
and fundamental feature of Oozie and users are encouraged to make good use of it.
This will make their workflows more flexible and dynamic.

The job.properties File
When and how do we set the values for the EL variables? As we saw in Chapter 1,
Oozie workflows are typically invoked with the following command (the command is
similar for coordinator and bundle jobs, but let’s restrict the scope of this discussion
to workflows):

oozie job -oozie http://localhost:4080/oozie/ -config ~/job.properties –run

The job.properties file is on the local filesystem and not on HDFS. The
filename job.properties conforms to Oozie conventions, but a different name can be
used if you wish (because this file is explicitly passed to the Oozie command line).
The file contains the job configuration that you send to Oozie for this invocation of
the workflow application. Think of the job.properties as the set of arguments for the
workflow.xml, which is the application. This file can be used to pass in all the vari‐
ables required to parameterize the workflow.xml. For example, - ${nameNode}. This
var can be defined in the job.properties file used for a particular run.

The workflow.xml can define the NameNode as follows:

The job.properties File | 89

<name-node>${nameNode}</name-node>

And the job.properties file can pass in an actual value to the workflow as follows:
nameNode=hdfs://abc.xyz.com:8020

If the Hadoop NameNode crashes and is replaced by another node (efg.qrs.com), we
don’t have to modify the workflow.xml on HDFS for making this update. We can just
replace the variable in job.properties for the next run of the workflow. It’s good prac‐
tice to handle the application XMLs like code rather than configuration and the less
often we modify “code,” the better.

Oozie accepts both the XML syntax and the properties file syntax
(key=value) as shown above. But do note the file extension mat‐
ters. If you’re using the XML syntax, you should name the
filefile_name.xml; if you’re using the properties file syntax, you
should name the file file_name.properties. The properties
(key=value) file syntax is simpler and much more popular among
users.

Example 5-8 contains a simple example of a typical job.properties file.

Example 5-8. Sample job.properties file

nameNode= hdfs://localhost:8020
jobTracker=localhost:8032

queueName=research
oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/joe/oozie/mrJob/firstWorkflow.xml

Example 5-9 shows the same file using the XML syntax.

Example 5-9. Sample job.xml file

<configuration>
 <property>
 <name>nameNode</name>
 <value>hdfs://localhost:8020</value>
 </property>
 <property>
 <name>jobTracker</name>
 <value>localhost:8032</value>
 </property>
 <property>
 <name>queueName</name>
 <value>research</value>
 </property>

90 | Chapter 5: Workflow Applications

 <property>
 <name>oozie.use.system.libpath</name>
 <value>true</value>
 </property>
 <property>
 <name>oozie.wf.application.path</name>
 <value>${nameNode}/user/joe/oozie/mrJob/firstWorkflow.xml</value>
 </property>
</configuration>

There are three variables defined in this file: jobTracker, nameNode, and queueName;
and they will be substituted during the workflow submission. Oozie will throw an
error if the variables cannot be substituted due to missing values. The most important
property in the job.properties file is the application root pointing to the HDFS direc‐
tory where the workflow files reside. It must be specified as
oozie.wf.application.path. This tells Oozie where to find the workflow XML file
on HDFS and everything follows from there. If you choose to go with the default
workflow.xml filename for the workflow XML, the oozie.wf.application.path can
just be a directory.

The other interesting setting in the job.properties file is the oozie.use.system.lib
path=true. This tells Oozie to look for JARs and libraries in the sharelib path, and
many actions like <distcp> and <hive> require this setting. Oozie sharelib is an
important topic and is explained in detail in “Managing Libraries in Oozie” on page
147.

Command-Line Option
Passing parameter values using the -D command-line option is pretty much the same
as defining them through the job.properties, except the -D overrides the properties file
and is of the highest priority. Example 5-10 contains an example of using -D on the
command line to pass in a variable.

Example 5-10. Calling the Oozie CLI with the -D option

oozie job -oozie http://localhost:4080/oozie/ -DqueueName=research
 -config job.properties –run

The config-default.xml File
The optional config-default.xml file can be packaged with the workflow and deployed
in the workflow app directory on HDFS. This file has default values for variables that
are not defined via the job.properties file or the -D option. You can use the same
job.properties file for all invocations of the workflow or use a different properties file
for different runs. But the config-default.xml file is valid for all invocations of the

The job.properties File | 91

workflow and serves as the default for all missing variables in other places. A sample
is shown here:

<configuration>
 <property>
 <name>queueName</name>
 <value>default</value>
 </property>
</configuration>

Note that a config-default.xml file in a directory can act as the
default for all workflow XMLs in that directory, though the normal
convention is to have one workflow per directory. This file has the
least priority and is often overridden by the job.properties file
and/or the -D option.

The <parameters> Section
Another convenient feature for parameterization is the <parameters> section at the
top of the workflow. This optional section allows users to declare the EL variables in
the workflow XML. This lets Oozie validate the XML and the parameters before sub‐
mission to the server rather than after. This is similar to a compile time check versus
a runtime check in programming languages. Users can declare just a <name> or also
specify a <value>. If there is just a name, Oozie will check for the value defined either
in the job.properties file or through -D . It will throw an error if the variable is not
defined. If the <parameters> section also includes a <value> element, that value will
be used as the default value if the variable is not defined elsewhere. It is similar to the
config-default.xml and can be used for handling defaults, though the <parameters>
section is confined to only that workflow file.

Oozie’s validation of the <parameters> section ignores the entries
in the config-default.xml file. So use the config-default.xml file
approach or the <parameters> section for providing the defaults,
but don’t try to mix both for a given workflow.

Example 5-11 contains an example of a <parameters> usage in a workflow.

Example 5-11. Parameters section in a workflow

...
<workflow-app name="parametersWF" xmlns="uri:oozie:workflow:0.5">
<parameters>
 <property>
 <name>queueName</name>
 <value>production</value>

92 | Chapter 5: Workflow Applications

 </property>
 <property>
 <name>outputDir</name>
 </property>
</parameters>
...

Configuration and Parameterization Examples
Let’s take a look at a couple of concrete examples to understand all the configuration
and parameterization concepts we have seen so far. In Example 5-12, the value for the
Hadoop configuration property mapred.job.queue.name will be evaluated as
“integration”.

Example 5-12. Configuration example

workflow.xml file:
...
<job-xml>my-job.xml</job-xml>
...
<configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>integration</value>
 </property>
</configuration>
...

my-job.xml file:

...
<property>
 <name>mapred.job.queue.name</name>
 <value>staging</value>
</property>
...

Basically, the inline definition in the body of the workflow overrides the definition in
the my-job.xml file.

Example 5-13 is a little more complicated and pulls in parameterization concepts.
The value for the Hadoop property mapred.job.queue.name will be evaluated as
“production” in this case.

Example 5-13. Parameterization example

config-default.xml:
<property>
 <name>queue_var</name>

Configuration and Parameterization Examples | 93

 <value>default</value>
</property>

job.properties:
queue_var=research

workflow.xml:
<job-xml>my-job.xml</job-xml>
...
<property>
 <name>queue_var</name>
 <value>production</value>
</property>

my-job.xml

<property>
 <name>mapred.job.queue.name</name>
 <value>${queue_var}</value>
</property>
...

The variable queue_var is defined in three places and that variable is used in my-
job.xml to define the mapred.job.queue.name property. The inline definition in
workflow.xml overrides the config-default.xml and job.properties. So the value for the
mapred.job.queue.name property will be evaluated as “production”.

Lifecycle of a Workflow
Now that we have looked at all aspects of a workflow specification, it’s good to under‐
stand the lifecycle of a workflow. As you know, once a workflow application is
deployed and copied to HDFS, we can run the jobs. A workflow job has a well-
defined set of state transitions from submission until completion.

Workflow statuses are: PREP, RUNNING, SUCCEEDED, KILLED, FAILED, and SUSPENDED.

When a workflow is submitted, its initial status is PREP. When the workflow is
started, it transitions from PREP to RUNNING.

The transition from PREP to RUNNING is not automatic. If you want
the workflow to start running immediately on submission without
having to perform an additional step to start it, use the -run option
instead of the -submit option when submitting the job with the
Oozie command-line tool. If the -submit option is used, the work‐
flow will be in PREP status until it is explicitly started using the
-start option of the Oozie command-line tool.

94 | Chapter 5: Workflow Applications

On completion, a workflow transitions to SUCEEDED, KILLED, or FAILED status
depending on the end result of its execution. If the execution completed successfully,
the end status of the workflow is SUCCEEDED. If the execution failed due to an error in
the workflow, the end status of the workflow is KILLED. If the execution failed due to
an error in Oozie itself, the end status of the workflow is FAILED.

It is a common practice to write a workflow to kill itself if it
encounters an application error; for example, if the input directory
for a Hadoop job does not exist.

A workflow in RUNNING status can be suspended. In that case, the workflow status
changes to SUSPENDED. When a workflow has been suspended, it does not make any
further progress. A workflow in SUSPENDED status can be resumed or killed. If the
workflow is resumed, its status changes back to RUNNING. If the workflow is killed, its
status changes to KILLED.

When a workflow is SUSPENDED, if the workflow was executing a
Hadoop job, the Hadoop job will continue running until comple‐
tion. Hadoop jobs cannot be paused. When the Hadoop job com‐
pletes, Oozie will update the workflow with the completion
information of the Hadoop job, but the workflow job itself will still
not make any further progress until resumed.

When a workflow reaches SUCCEEDED, KILLED, or FAILED status, there is no further
processing performed by Oozie for the workflow. Any of these three statuses indicates
the completion status of the workflow. Figure 5-6 captures workflow state transitions.

Lifecycle of a Workflow | 95

Figure 5-6. Workflow state transitions

Action States
Much like the workflow, individual actions go through their own state transitions,
too. We won’t cover the action states in detail because users don’t usually manage the
action states at that level of granularity. It’s more practical to manage complete work‐
flows or even coordinators or bundles. The list of action states is captured here just
for your reference:

• DONE

• END_MANUAL

• END_RETRY

• ERROR

• FAILED

• KILLED

• OK

• PREP

• RUNNING

• START_MANUAL

• START_RETRY

• USER_RETRY

96 | Chapter 5: Workflow Applications

In this chapter, we saw the various practical aspects of writing an Oozie workflow
application. This chapter, combined with the coverage of various action types in
Chapter 4, should give you enough ammunition for writing efficient, production-
quality workflow applications. We will now move on to the Oozie coordinator in the
next chapter.

Lifecycle of a Workflow | 97

CHAPTER 6

Oozie Coordinator

In the previous two chapters, we covered the Oozie workflow in great detail. In addi‐
tion to the workflow, Oozie supports another abstraction called the coordinator that
schedules and executes the workflow based on triggers. We briefly introduced the
coordinator in Chapter 2. In this chapter, we will cover the various aspects of the
Oozie coordinator in a comprehensive fashion using real-life use cases. We present
multiple scenarios to demonstrate how the Oozie coordinator can be utilized to trig‐
ger workflows based on time. We also describe the various operational knobs that the
coordinator provides to control the execution of the workflow. We will get into the
data availability–based workflow trigger in Chapter 7.

Coordinator Concept
As described in Chapter 5, an Oozie workflow can be invoked manually and on
demand using the Oozie command-line interface (CLI). This is sufficient for a few
basic use cases. However, for most of the practical use cases, this is inadequate and
very difficult to manage. For instance, consider a scenario where a workflow needs to
be started based on some external trigger or condition. In other words, as soon as
some predefined condition or predicate is satisfied, the corresponding workflow
should be executed. For example, we could have a requirement to run the workflow
every day at 2 a.m. It is very hard to achieve this behavior using just the CLI and basic
scripting. There are two main reasons for this:

• The specification of multifaceted predicates (such as time and data dependency)
can often get very complex.

• The scheduling of workflows based on such predicates is a challenging task.

99

Oozie coordinator helps handle these trigger-based workflow executions. First, Oozie
provides a flexible framework to specify the triggers or predicates. Second, it sched‐
ules the workflow based on those predefined triggers. In addition, it enables adminis‐
trators to monitor and control the workflow execution depending on cluster
conditions and application-specific restrictions.

Triggering Mechanism
As of now, the Oozie coordinator supports two of the most common triggering
mechanisms, namely time and data availability. These triggering mechanisms allow
recurrent and interdependent workflow executions that can create an implied data
pipeline application.

Time Trigger
Time-based triggers are easy to explain and resembles the Unix cron utility. In a time-
aware coordinator, a workflow is executed at fixed intervals or frequency. A user typi‐
cally specifies a time trigger in the coordinator using three attributes:

Start time (ST)
Determines when to execute the first instance of the workflow

Frequency (F)
Specifies the interval for the subsequent executions

End time (ET)
Bounds the last execution start time (i.e., no new execution is permitted on or
after this time)

In other words, the first execution occurs at the ST and subsequent executions occur
at (ST + F), (ST + 2F), (ST + 3F) , and so on until the ET is reached.

Data Availability Trigger
Workflow jobs usually process some input data and produce new output data. There‐
fore, it is very common to hold off the workflow execution until all of the required
input data becomes available. For instance, you want to execute a workflow at 1 a.m.,
but you also want to make sure the required input data is available before the work‐
flow starts. You ideally want the job to wait even past 1 p.m. if any of the input data is
missing.

The Oozie coordinator supports a very flexible data dependency–based triggering
framework. It is important to note that the concept of data availability–based sched‐
uling is a little more involved than time-based triggering. Therefore, we introduce the
concept here but explain data triggers in detail in Chapter 7.

100 | Chapter 6: Oozie Coordinator

Coordinator Application and Job
A coordinator application is a template to define the triggers or predicates to launch a
workflow. In particular, it has three components: triggers (time and/or data triggers),
a reference to the workflow to be launched, and the workflow execution parameters.
Coordinator applications are usually parameterized to allow flexibility. When a coor‐
dinator application is submitted to Oozie with all its parameters and configurations,
it is called a coordinator job. A coordinator application can be submitted multiple
times with the same or different parameters that create multiple and independent
coordinator jobs. As explained in “Oozie Applications” on page 13, Oozie executes
coordinator jobs whereas users write coordinator applications.

Coordinator Action
A coordinator job regularly creates/materializes a new coordinator action for each
time instance based on its start time and frequency. For example, if a coordinator job
has a start time of January 1, 2014, and an end time of December 31, 2014, with a
frequency of one day, there will be a total of 365 actions, one created each day. More
importantly, the coordinator action actually checks for data availability and ultimately
submits the workflow.

Our First Coordinator Job
In this section, we describe a basic coordinator job that is very similar to a Unix cron
job. This example introduces the common terminologies and concepts of a time-
triggered coordinator job. As mentioned earlier, the time-triggered coordinator
launches the workflow starting from the start time and continuously launches one at
every predefined interval (a.k.a. frequency) until it reaches the end time. In this
example, we want to execute the identity-WF (explained in Chapter 1) daily starting
from 2 a.m., January 1, 2014 to 2 a.m., December 31, 2014. That means the first coor‐
dinator action will start at 2014-01-01T02:00Z, the second instance will start at
2014-01-02T02:00Z, and the last instance at 2014-12-31T02:00Z. Each of these time
instances is called the nominal time of that specific action. In other words, each coor‐
dinator action must have a nominal time. Here’s the formal XML definition of such a
coordinator:

<coordinator-app name="my_first_coord_job" start="2014-01-01T02:00Z "
 end=“2014-12-31T02:00Z" frequency="1440" timezone="UTC"
 xmlns="uri:oozie:coordinator:0.4">
 <action>
 <workflow>
 <app-path>${appBaseDir}/app/</app-path>
 <configuration>
 <property>
 <name>nameNode</name>

Coordinator Application and Job | 101

 <value>${nameNode}</value>
 </property>
 <property>
 <name>jobTracker</name>
 <value>${jobTracker}</value>
 </property>
 <property>
 <name>exampleDir</name>
 <value>${appBaseDir}</value>
 </property>
 </configuration>
 </workflow>
 </action>
</coordinator-app>

Nominal time specifies when a workflow execution should ideally
start. For various reasons, it might not start on time but the nomi‐
nal time of that coordinator action is unchanged regardless of
when the workflow actually starts. In our example, nominal time
for the first coordinator action is 2014-01-01T02:00Z and for the
second action is 2014-01-02T02:00Z, irrespective of their actual
execution time. It’s important that you have a clear understanding
of nominal time.

For ease of explanation, we artificially divide the above coordinator XML into two
segments: specification of the trigger(s) and definition of the triggered workflow. The
first segment primarily describes the triggering conditions including both time and
data dependencies.

As mentioned earlier, there are three main attributes required to specify a coordina‐
tor job. The start time defines when to start the execution and the value could be
some time in the future or some time from the past. The end time defines the time
when a coordinator should stop the creation of new coordinator actions. Both start
and end times are defined in a combined date and time format as defined by ISO
8601. The frequency of the job is 1,440 minutes or one day. Although the default unit
of coordinator frequency is minutes, there are other convenient ways to specify the
frequency using EL functions that we describe in “Parameterization of the Coordina‐
tor” on page 110. More specifically, for daily jobs, we recommend you use
${coord:days(1)} instead of 1,440 minutes for frequency.

In addition, there are two other self-explanatory attributes that are not directly
related to the triggering mechanism. The first attribute is name with value
my_first_coord_job that can later be used for querying Oozie. The second attribute
is xmlns, which specifies the coordinator namespace used for coordinator XML ver‐
sioning. The namespace plays a critical role in ensuring backward compatibility of
the coordinator. For example, the new/updated features added for namespace

102 | Chapter 6: Oozie Coordinator

http://bit.ly/oozie-iso-8601
http://bit.ly/oozie-iso-8601

oozie:coordinator:0.4 might break or modify the functionality of a coordinator
written with an older namespace (e.g., oozie:coordinator:0.3). Alternatively, if you
want to use some of the new/updated features, the new namespace should be used.

The next segment of the coordinator XML specifies what type of job to execute when
the triggering conditions are met. As of now, Oozie coordinator only supports
launching Oozie workflows and a coordinator application can only include one work‐
flow application. In the future, the scope could be extended to other types of jobs
as well.

The workflow tag here is the same as the one we used to define a standalone submis‐
sion in “A Simple Oozie Job” on page 4. coordinator uses these values to parameterize
and automate the workflow submission as we do with any standalone workflow sub‐
mission. The main difference is in the representation. In a standalone workflow exe‐
cution, we typically use a property file in key-value format, though the XML syntax is
also supported. But for the workflow execution via a coordinator, we have to define it
inline in XML format. In both cases, these key-value pairs are passed to the workflow
at its start.

It is important to note that the propagation of coordinator properties down to the
workflow is not automatic; you need to define and specify these key value pairs under
<action> configuration. As shown in the example, we specify app-path to point to
the workflow application path, whereas in a standalone CLI-based workflow submis‐
sion we define the property oozie.wf.application.path in the property file to spec‐
ify the same thing. The rest of the parameters are optional and defined as
configuration properties. The properties defined in this example are similar to the
properties defined in “A Simple Oozie Job” on page 4.

Coordinator Submission
There are multiple ways to submit a coordinator. In this section, we only explain job
submission using the oozie CLI. Other approaches are described later in Chapter 11.
At first, we will need to create a local properties file (say job.properties) and pass this
filename during submission as an argument to the CLI:

$ cat job.properties
nameNode=hdfs://localhost:8020
jobTracker=localhost:8032
appBaseDir=${nameNode}/user/${user.name}/ch06-first-coord
oozie.coord.application.path=${appBaseDir}/app

In addition, we will need to upload the coordinator job definition to HDFS. It pri‐
marily includes the job’s XML definition (i.e., coordinator.xml):

$ hdfs dfs -put ch06-first-coord/ .
$ hdfs dfs -ls -R ch06-first-coord/
drwxr-xr-x - joe supergroup 0 2014-03-29 12:24 ch06-first-coord/app

Coordinator Application and Job | 103

-rw-r--r-- 1 joe supergroup 705 2014-03-29 12:24 ch06-first-coord/app/
coordinator.xml
-rw-r--r-- 1 joe supergroup 2141 2014-03-29 12:24 ch06-first-coord/app/
workflow.xml
drwxr-xr-x - joe supergroup 0 2014-03-29 12:24 ch06-first-coord/data
drwxr-xr-x - joe supergroup 0 2014-03-29 12:24 ch06-first-coord/data/
input
-rw-r--r-- 1 joe supergroup 25 2014-03-29 12:24 ch06-first-coord/data/
input/input.txt

Similar to the workflow XML convention explained in “Application
Deployment Model” on page 20, the coordinator definition file
doesn’t have to be named coordinator.xml. Using different names
allows users to host multiple definitions in one directory, which has
more of a practical value for coordinators than workflows.

The command in Example 6-1 submits the coordinator and returns a coordinator job
ID if successful. The subsequent commands show the most common operations that
users typically run for monitoring and managing the coordinator jobs through the
Oozie CLI.

Example 6-1. Running and managing coordinator jobs

$ export OOZIE_URL=http://localhost:11000/oozie
$ oozie job -run -config job.properties
job: 0000003-140329120933279-oozie-joe-C
$ oozie job -info 0000003-140329120933279-oozie-joe-C
Job ID : 0000003-140329120933279-oozie-joe-C
--
Job Name : my_first_coord_job
App Path : hdfs://localhost:8020/user/joe/ch06-first-coord/app
Status : RUNNING
Start Time : 2014-01-01 02:00 GMT
End Time : 2014-12-31 02:00 GMT
Pause Time : -
Concurrency : 1
--
ID Status Ext ID
Err Code Created Nominal Time
0000003-140329120933279-oozie-joe-C@1 SUCCEEDED 0000004-140329120933279-
 oozie-joe-W
- 2014-03-29 23:14 GMT 2014-01-01 02:00 GMT
--
0000003-140329120933279-oozie-joe-C@2 SUCCEEDED 0000005-140329120933279-
 oozie-joe-W
- 2014-03-29 23:16 GMT 2014-01-02 02:00 GMT
--

$ oozie job -info 0000003-140329120933279-oozie-joe-C@1

104 | Chapter 6: Oozie Coordinator

ID : 0000003-140329120933279-oozie-joe-C@1
--
Action Number : 1
Console URL : -
Error Code : -
Error Message : -
External ID : 0000004-140329120933279-oozie-joe-W
External Status : -
Job ID : 0000003-140329120933279-oozie-joe-C
Tracker URI : -
Created : 2014-03-29 23:14 GMT
Nominal Time : 2014-01-01 02:00 GMT
Status : SUCCEEDED
Last Modified : 2014-03-29 23:15 GMT
First Missing Dependency : -
--

$ oozie job -kill 0000003-140329120933279-oozie-joe-C
$ oozie job -info 0000003-140329120933279-oozie-joe-C
Job ID : 0000003-140329120933279-oozie-joe-C
--
Job Name : my_first_coord_job
App Path : hdfs://localhost:8020/user/joe/ch06-first-coord/app
Status : KILLED
Start Time : 2014-01-01 02:00 GMT
End Time : 2014-12-31 02:00 GMT
Pause Time : -
Concurrency : 1
--
ID Status Ext ID
Err Code Created Nominal Time
0000003-140329120933279-oozie-joe-C@1 SUCCEEDED 0000004-140329120933279-
 oozie-joe-W
- 2014-03-29 23:14 GMT 2014-01-01 02:00 GMT
--
0000003-140329120933279-oozie-joe-C@2 SUCCEEDED 0000005-140329120933279-
 oozie-joe-W
- 2014-03-29 23:16 GMT 2014-01-02 02:00 GMT
--

Upon successful submission, Oozie returns a unique coordinator
job ID. Each coordinator ID has a -C at the end. At the start time
for this job, Oozie initiates the creation of the coordinator action.
Oozie also assigns an ID for each new action. coordinator action
IDs are generated by concatenating the coordinator job ID, the @
sign, and a sequentially incrementing action number. For example,
if the coordinator job ID is 0000003-140329120933279-oozie-
joe-C, the first two action IDs will be 0000003-140329120933279-
oozie-joe-C@1 and 0000003-140329120933279-oozie-joe-C@2.

Coordinator Application and Job | 105

Oozie Web Interface for Coordinator Jobs
Oozie provides a basic, read-only user interface for coordinator jobs very
similar to what it provides for workflows and bundles. Users can click on the Coordi‐
nator Jobs tab on the Oozie web interface at any time. It displays the list of recent
coordinator jobs in a grid-like UI as shown in Figure 6-1. This UI captures most of
the useful information about the coordinator jobs. The last column titled Next Mate‐
rialization shows the nominal time for the next coordinator action to be materialized
for any running coordinator job.

Figure 6-1. Oozie web interface for coordinator jobs

Users can drill down into a specific coordinator job by clicking on the row of that job.
This will display a new window presenting the details of that coordinator job, as
shown in Figure 6-2. As you can see, there are four tabs: Coord Job Info, Coord Job
Definition, Coord Job Configuration, and Coord Job Log. You can select any of these
tabs as necessary (the Coord Job Info tab is displayed by default). The first tab shows
the current job status, including all the spawned coordinator actions listed in the bot‐
tom half of the window. Users can click on the reload icon located at the top-left of
the window to refresh the contents. The second tab, Coord Job Definition, displays
the original coordinator XML that you submitted.

All of the configuration settings passed as part of the CLI and the properties file are
displayed in the third tab (the Coord Job Configuration tab). The fourth tab shows
the Oozie log generated for this specific coordinator job. Since coordinator jobs typi‐
cally create a lot of coordinator actions, they tend to be long running and the logs
may be huge. It can take a long time to load all the logs from the Oozie backend.
That’s why it is better to retrieve only the logs for a subset of coordinator actions. For
this purpose, there is a “Retrieve log” button where the user can specify a set of coor‐
dinator action numbers such as “1,2” or “1-3,” and so on. This will ensure that Oozie
retrieves the logs only for those actions.

106 | Chapter 6: Oozie Coordinator

Figure 6-2. Oozie web interface for coordinator jobs

From the first tab (Coord Job Info) of the coordinator job window, users can further
drill down to the corresponding workflow by clicking on the row of the coordinator
action. This displays the workflow window shown in Figure 6-3. This window is
essentially the same as the one explained in “A Simple Oozie Job” on page 4.

Figure 6-3. A workflow job launched by coordinator

Coordinator Application and Job | 107

Coordinator Job Lifecycle
So far we have discussed the details of coordinator jobs and how to submit and man‐
age them. In this section, we will briefly describe the internals of a coordinator job’s
execution. In particular, we describe the different states that a coordinator job goes
through beginning with its submission. This will help users understand the various
statuses shown at different stages of job execution and then act accordingly.

The main function of a coordinator job is to create (materialize) a coordinator action
for a specific time instance (nominal time). coordinator jobs often run from the start
time to the end time and materialize new coordinator actions periodically.

Figure 6-4. Coordinator job lifecycle

When a coordinator job is submitted to the Oozie service, Oozie parses the coordina‐
tor XML and validates the configurations. After that, Oozie returns a coordinator job
ID and puts the job in PREP state. Because the coordinator job might have a future
start time, Oozie keeps the job in PREP state until it reaches the start time. As shown
in Figure 6-4, Oozie moves the job into the RUNNING state as soon as the start time is
reached. In the RUNNING state, Oozie continuously materializes coordinator actions if
and when the nominal time is reached. The coordinator job generally spends most of
its time in the RUNNING state from the start to its end time. Users can suspend or pause
the coordinator at any time for operational reasons or otherwise, and that moves the
job’s state to SUSPENDED or PAUSED, respectively.

The final state of a coordinator job depends on the states of all the spawned coordina‐
tor actions. For example, if and when all coordinator actions are materialized and all
actions complete successfully, Oozie moves the job to the SUCCEEDED state. Likewise, if

108 | Chapter 6: Oozie Coordinator

all the actions end up in the FAILED state, the coordinator job also moves to the
FAILED state. Figure 6-4 shows the basic transition diagram. The actual transitions are
much more complex: if one of the coordinator actions fails, times out, or is killed as
the job is still running, Oozie moves the job from RUNNING to RUNNING_WITH_ERROR.
Similarly, there are other states such as DONE_WITH_ERROR, SUSPENDED_WITH_ERROR,
and PAUSED_WITH_ERROR. Also, it’s possible to explicitly kill a coordinator job in any
state, which transitions the job to the KILLED state.

Coordinator Action Lifecycle
As mentioned earlier, a coordinator job creates or materializes a coordinator action
for a specific time instance (a.k.a. nominal time). The coordinator action waits until
the dependent data (if any) is available and then submits the actual workflow. In this
section, we briefly describe the different coordinator action states and their transi‐
tions.

When a coordinator job materializes a coordinator action, Oozie assigns the action to
the WAITING state. In this initial state, the action waits for any dependent data for the
duration of the timeout period (configurable and described in “Execution Controls”
on page 112). If any of the dependent data is still missing after the timeout period,
Oozie transitions the action to the TIMEDOUT state. On the other hand, if all the data
become available, Oozie moves the action’s state to READY. At this state, Oozie enfor‐
ces the throttling mechanism as defined by the concurrency setting. This setting
specifies the maximum number of coordinator actions of a coordinator job that can
run simultaneously. If the action fits under the concurrency constraint, Oozie just
transfers the action to the SUBMITTED state. This is when Oozie submits the corre‐
sponding workflow. Figure 6-5 captures all the important state transitions.

Figure 6-5. Coordinator action lifecycle

Coordinator Action Lifecycle | 109

If the submission fails, Oozie moves the action to the FAILED state. Otherwise, it
moves it to the RUNNING state and waits for the workflow to finish. At this stage, the
state of the workflow dictates the state of the corresponding coordinator action. More
specifically, depending on whether the workflow fails, succeeds, or gets killed, Oozie
transitions the state of the coordinator action to FAILED, SUCCEEDED, or KILLED,
respectively. A user can kill a coordinator action at any state and that transitions the
action to the KILLED state.

Parameterization of the Coordinator
The coordinator XML can be parameterized using the same techniques we discussed
in “Parameterization” on page 86 for the workflow. It supports both variable and
function parameters in exactly the same way as seen before. In this section, we
explain time- and frequency-related EL functions. We explain other EL functions as
needed in subsequent sections.

EL Functions for Frequency
In “Our First Coordinator Job” on page 101, we used frequency="1440" for daily
jobs. This frequency was expressed in minutes. However, there are some scenarios
where frequencies can’t be easily expressed in absolute minutes. For example, a fre‐
quency of one day may not always translate to 24 hours. Some days could be 23 hours
or 25 hours due to Daylight Saving Time. Similarly, every month does not correspond
to 30 days. It could be anything between 28 and 31 days. To help you handle these
intricacies easily, Oozie provides a set of functions to define the frequency. We
strongly encourage you to utilize those functions instead of using absolute value in
minutes.

In a nutshell, the advantages of using Oozie-defined EL functions include:

• Transparent handling of Daylight Saving Time
• Makes the application portable across time zones
• Easy handling of Daylight Saving Time or any time-related policy changes in var‐

ious countries

Day-Based Frequency
Oozie provides two EL functions to specify day-based frequencies. The first one,
coord:days(N), means the number of minutes in N days. The second one,
coord:endOfDays(N), means the same thing as coord:days(N). The only difference is
that endOfDays shifts the first occurrence to the end of the day and then adds N days
to get the next occurrence. Table 6-1 explains the different scenarios.

110 | Chapter 6: Oozie Coordinator

Table 6-1. Day-based frequency
EL function Start time Time zone In minutes First instance Second instance

days(1) 2014-01-01T08:00Z UTC 1440 2014-01-01T08:00Z 2014-01-02T08:00Z

days(2) 2014-01-01T08:00Z America/Los_Angeles 1440 X 2 2014-01-01T08:00Z 2014-01-03T08:00Z

days(1) 2014-03-08T08:00Z UTC 1440 2014-03-08T08:00Z 2014-03-09T08:00Z

days(1) 2014-03-08T08:00Z America/Los_Angeles 1380 2014-03-08T08:00Z 2014-03-09T07:00Z

days(2) 2014-03-08T08:00Z America/Los_Angeles 1380 +1440 2014-03-08T08:00Z 2014-03-10T07:00Z

endOfDays(1) 2014-01-01T08:00Z UTC 1440 2014-01-02T00:00Z 2014-01-03T00:00Z

endOfDays(1) 2014-01-01T08:00Z America/Los_Angeles 1440 2014-01-01T08:00Z 2014-01-02T08:00Z

endOfDays(1) 2014-01-01T09:00Z America/Los_Angeles 1440 2014-01-02T08:00Z 2014-01-03T08:00Z

endOfDays(1) 2014-03-07T09:00Z America/Los_Angeles 1380 2014-03-08T08:00Z 2014-03-09T08:00Z

Month-Based Frequency
Any month-based frequency also has its own issues similar to a day-based frequency.
These include:

• Number of days in a month is not a constant, but changes month to month. It
also depends on whether the year is a leap year or not.

• Number of hours in the individual days of a month might not be the same due to
Daylight Saving Time.

There are two month-based EL functions for frequency. coord:months(N) returns
the number of minutes in N months starting from the current nominal time.
coord:endOfMonths(N) is very similar to coord:months(N). The difference is that
endOfMonths() first moves the current nominal time to the end of this month and
then calculates the number of minutes for N months from that point. Table 6-2 dem‐
onstrates the various scenarios with real values.

Table 6-2. Month-based frequency
EL function Start time Time zone In minutes First instance Second instance

months(1) 2014-01-01T08:00Z UTC 1440 x 31 2014-02-01T08:00Z 2014-02-01T08:00Z

months(2) 2014-01-01T08:00Z America/
Los_Angeles

1440 X (31 +28) 2014-03-01T08:00Z 2014-03-01T08:00Z

months(1) 2014-03-01T08:00Z UTC 1440 x 31 2014-04-01T08:00Z 2014-04-01T08:00Z

months(1) 2014-03-01T08:00Z America/
Los_Angeles

1440 x 30 + 1380 2014-04-01T07:00Z 2014-04-01T08:00Z

endOfMonths(1) 2014-01-01T08:00Z UTC 1440 x 31 2014-02-01T00:00Z 2014-03-01T00:00Z

endOfMonths(1) 2014-01-01T08:00Z America/
Los_Angeles

1440 x 31 2014-01-01T08:00Z 2014-02-01T08:00Z

Parameterization of the Coordinator | 111

Execution Controls
A coordinator job continuously creates coordinator actions until it reaches the end
time. In an ideal situation, a coordinator job will have only one active coordinator
action in Oozie at any give time. Let’s assume that each action completes before the
nominal time of the next action under normal processing conditions. However, there
are still many circumstances that result in a lot of coordinator actions being concur‐
rently active in the system. Let’s call this a “backlog,” which could occur for the fol‐
lowing reasons:

Delayed data
When any dependent data for a coordinator is not available, Oozie has to wait.
This could build up a backlog.

Reprocessing
It is very common to rerun the job after its original start time due to either bad
input data or a bug in the processing logic. This reprocessing scenario could
cause a significant backlog.

Late submission
Users could submit the coordinator job late for various practical reasons. The size
of the backlog of coordinator actions in such situations depends on how late the
submission was. The system might take a long time to catch up to the current
processing time depending on various factors.

Whatever the root cause is, this backlog creates potential system instability for Oozie,
as well as the Hadoop services. In particular, each active coordinator action increases
the load on Oozie and Hadoop system resources, such as the database, memory, CPU,
and the NameNode. To address these catch-up scenarios, Oozie provides four control
parameters for any coordinator. Having a good understanding of the coordinator
action lifecycle explained in “Coordinator Action Lifecycle” on page 109 will help you
comprehend the control parameters explained here:

throttle
A coordinator job periodically creates coordinator actions. Therefore, if we can
regulate this materialization, the ultimate number of outstanding actions can be
controlled. Oozie provides a user-level control knob called throttle, which a
user can specify in her coordinator XML. This controls how many maximum
coordinator actions can be in the WAITING state for a coordinator job at any
instant. If no value is specified, the system default value of 12 is used. While a
user can specify any value for this, there is also a system-level upper limit that
an administrator can tune. This system-level limit is calculated by
multiplying the throttling factor (property oozie.service.coord.
materialization.throttling.factor) and the maximum internal processing

112 | Chapter 6: Oozie Coordinator

queue size (property oozie.service.CallableQueueService.queue.size)
defined in oozie-site.xml. In short, this setting can be tuned both at the system
and the user level through the oozie-site.xml and coordinator XML, respectively.

timeout
While throttle restricts how many actions can be in the WAITING state, timeout
enforces how long each coordinator action can be in WAITING. Like throttle,
there are both user- and system-level limits to the timeout value. A user can
specify a timeout in minutes in the coordinator XML. If no timeout value is
specified, Oozie defaults to 7 days. In addition, Oozie enforces the maximum
value that a user can specify for the timeout. Oozie system administrators can
specify this using the property oozie.service.coord.default.max.timeout in
oozie-site.xml. The default maximum timeout is 60 days.

execution order
If there are multiple actions in the READY state, Oozie needs to determine which
workflow to submit first. This execution knob specifies which order Oozie
should follow. There are three possible values: FIFO, LIFO, and LAST_ONLY. The
default is FIFO (First in First Out), which means start the earliest action first. The
LIFO (Last In First Out) asks Oozie to execute the latest action first. LAST_ONLY
means execute only the last one and discard the rest.

As of the time of writing this book, FIFO is the only fully tested
option.

concurrency
This dictates how many coordinator actions of a job can run simultaneously. It
restricts the maximum number of actions that can be in the RUNNING state for a
coordinator job at the same time. In other words, it regulates the transition from
the READY state to the RUNNING state of a coordinator action. This setting primar‐
ily impacts the load on the Hadoop cluster. The default value is 1. A value of -1
means infinite.

An Improved Coordinator
Our initial example (“Our First Coordinator Job” on page 101) was very simple and
straightforward. In Example 6-2, we extend it with more parameterization and by
adding the <controls> section.

An Improved Coordinator | 113

Example 6-2. Improved coordinator

 <coordinator-app name="my_second" start="${startTime}" end="${endTime}"
 frequency="${coord:days(1)}" timezone="UTC"
 xmlns="uri:oozie:coordinator:0.4">
 <controls>
 <timeout>${my_timeout}</timeout>
 <concurrency>${my_concurrency}</concurrency>
 <execution>${execution_order}</execution>
 <throttle>${materialization_throttle}</throttle>
 </controls>
 <action>
 <workflow>
 <app-path>${appBaseDir}/app/</app-path>
 <configuration>
 <property>
 <name>nameNode</name>
 <value>${nameNode}</value>
 </property>
 <property>
 <name>jobTracker</name>
 <value>${jobTracker}</value>
 </property>
 <property>
 <name>exampleDir</name>
 <value>${appBaseDir}</value>
 </property>
 </configuration>
 </workflow>
 </action>
</coordinator-app>

$ cat job.properties
nameNode=hdfs://localhost:8020
jobTracker=localhost:8032
appBaseDir=${nameNode}/user/${user.name}/ch06-second-coord
startTime=2014-01-01T02:00Z
endTime=2014-12-31T02:00Z
my_timeout=60
my_concurrency=2
execution_order=FIFO
materialization_throttle=5
oozie.coord.application.path=${appBaseDir}/app

$ hdfs dfs -put ch06-second-coord .

$ hdfs dfs -ls -R ch06-second-coord
drwxr-xr-x - joe supergroup 0 2014-03-29 16:46 ch06-second-coord/app
-rw-r--r-- 1 joe supergroup 914 2014-03-29 16:46 ch06-second-coord/app/
 coordinator.xml
-rw-r--r-- 1 joe supergroup 2141 2014-03-29 16:46 ch06-second-coord/app/
 workflow.xml
drwxr-xr-x - joe supergroup 0 2014-03-29 16:48 ch06-second-coord/data

114 | Chapter 6: Oozie Coordinator

drwxr-xr-x - joe supergroup 0 2014-03-29 16:46 ch06-second-coord/data/input
-rw-r--r-- 1 joe supergroup 25 2014-03-29 16:46 ch06-second-coord/data/
 input/input.txt
drwxr-xr-x - joe supergroup 0 2014-03-29 16:48 ch06-second-coord/data/output
-rw-r--r-- 3 joe supergroup 0 2014-03-29 16:48 ch06-second-coord/data/
 output/_SUCCESS
-rw-r--r-- 3 joe supergroup 31 2014-03-29 16:48 ch06-second-coord/data/
 output/part-00000

$ oozie job –run –config job.properties
<COORDINATOR-JOB ID>

In this chapter, we covered the basic concepts of the coordinator with a primary focus
on time-based triggers. The next chapter will continue to dig deeper into the coordi‐
nator framework with a focus on data dependencies.

An Improved Coordinator | 115

CHAPTER 7

Data Trigger Coordinator

In Chapter 6, we primarily discussed how Oozie materialized coordinator actions at
periodic intervals and subsequently executed the workflow. In other words, we only
considered the time-based trigger to start workflows. However, time is not the only
dependency that determines when to launch a workflow for many use cases. A com‐
mon use case is to wait for input data. If a workflow is started before its required data
is available, the workflow execution will either produce wrong results or fail. The
Oozie coordinator allows users to express both data and time dependency together
and to kick off the workflow accordingly. There are many diverse use cases based on
data dependency that poses serious challenges to the design of the coordinator. In this
chapter, we explain how to express both data and time dependency in a coordinator
and how Oozie manages the workflow executions.

Expressing Data Dependency
It’s important to understand the three terms, dataset, input-events, and output-
events, that Oozie uses to describe data dependencies in a coordinator XML.

Dataset
A dataset is a logical entity to represent a set of data produced by an application. A
user can define a dataset either using its directory location or using metadata. Oozie
has always supported directory-based data dependency. Recently, Oozie introduced
metadata-based data dependency as well. This book primarily focuses on the
directory-based dataset, as that’s the most commonly used approach. The metadata-
based dependency will be covered later, in “HCatalog-Based Data Dependency” on
page 174.

117

Furthermore, the data in a dataset can be produced in two ways:

• In a fixed interval
• Ad hoc/random, without following any time pattern

In Oozie, the dataset produced in regular frequency is called synchronous and the
dataset produced randomly is known as asynchronous. Oozie currently supports only
the synchronous datasets, so this is the type we will focus on in this chapter. We will
explore an approach to handle asynchronous datasets later in “Emulate Asynchro‐
nous Data Processing” on page 172. In a nutshell, a dataset in Oozie is a template to
represent a set of directory-based data produced at fixed time intervals.

Defining a dataset
There are five attributes to define a dataset in Oozie:

name
This specifies the logical name of a dataset. There can be more than one dataset
in a coordinator. The name of a dataset must be unique within a coordinator.

initial-instance
This specifies the first time instance of valid data in a dataset. This time instance
is specified in a combined date and time format. Any reference to data earlier
than this time is meaningless.

frequency
This determines the interval of successive data instances. A user can utilize any
EL functions mentioned in “Parameterization of the Coordinator” on page 110 to
define the frequency.

uri-template
This specifies the template of the data directory in a dataset. The data directory of
most batch systems often contains year, month, day, hour, and minute to reflect
the effective data creation time. Oozie provides a few system-defined variables to
specify the template. These are YEAR, MONTH, DAY, HOUR, and MINUTE. These system
variables are only valid in defining uri-template. During execution, Oozie
replaces these using the timestamp of a specific dataset instance.

In a synchronous dataset, every data instance is associated
with a time instance. For example, if the time instance of a
dataset is 2014-07-15T10:25Z, the variables YEAR, MONTH, DAY,
HOUR, and MINUTE will be replaced with 2014, 07, 15, 10, and
25, respectively. However, it’s not required to utilize all these
system variables to define a uri-template.

118 | Chapter 7: Data Trigger Coordinator

http://bit.ly/oozie-iso-8601

done-flag
This specifies the filename that is used to indicate whether the data is ready to be
consumed. This file is used as a signal to prevent the dependent process from
starting too early with only partial data as input. The done-flag is optional and
defaults to _SUCCESS if it’s not specified. Usually, a Hadoop MapReduce job cre‐
ates a zero-size file called _SUCCESS at the end of processing to indicate data com‐
pleteness. If done-flag exists, but the value is specified as empty, Oozie just
checks for the existence of the directory and uses that as a signal for completion.

The following example shows a dataset definition. The dataset ds_input1 is produced
by some other application every six hours starting from 2 a.m. on December 29. The
first three instances of the ds_input1 dataset are in directories: hdfs://localhost:8020/
user/joe/revenue_feed/2014-12-29-02, hdfs://localhost:8020/user/joe/revenue_feed/
2014-12-29-08, and hdfs://localhost:8020/user/joe/revenue_feed/2014-12-29-14, respec‐
tively. The producer of the data creates a file called _trigger (defined as done-flag)
when the data for the previous six hours is complete and ready. For example, if any
coordinator action depends of the first data instance, coordinator will particularly
wait for the file hdfs://localhost:8020/user/joe/revenue_feed/2014-12-29-02/_trigger.
Instead, if the done-flag contains an empty value, the coordinator will wait until the
directory hdfs://localhost:8020/user/joe/revenue_feed/2014-12-29-02/ is created:

<dataset name="ds_input1" frequency="${coord:hours(6)}"
 initial-instance="2014-12-29T02:00Z">
 <uri-template>
 ${baseDataDir}/revenue_feed/${YEAR}-${MONTH}-${DAY}-${HOUR}
 </uri-template>
 <done-flag>_trigger</done-flag>
</dataset>

In practice, there could be multiple datasets defined in a coordinator. Oozie provides
a <datasets> section where a user can define all the relevant datasets. In addition,
Oozie allows users to include a separate XML file within the <datasets> section that
includes a set of dataset definitions. This enables users to define the datasets in one
file and reuse them in multiple coordinators. If a dataset with the same name is
defined in both places, the one defined in the coordinator XML supersedes the one in
the other file. The following example shows how to include a dataset file:

<datasets>
 <include>hdfs://localhost:8020/user/joe/shares/common_datasets.xml</include>
 <dataset name="ds_input1" frequency="${coord:hours(6)}"
 initial-instance="2014-12-29T02:00Z">
 <uri-template>
 ${baseDataDir}/revenue_feed/${YEAR}-${MONTH}-${DAY}-${HOUR}
 </uri-template>
 <done-flag>_trigger</done-flag>
 </dataset>
</datasets>

Expressing Data Dependency | 119

The example common_datasets.xml could be as follows:
<datasets>
 <dataset name="ds_input2" frequency="${coord:hours(6)}"
 initial-instance="2014-12-29T02:00Z">
 <uri-template>
 ${baseDataDir}/revenue_feed/${YEAR}-${MONTH}-${DAY}-${HOUR}
 </uri-template>
 <done-flag>_trigger</done-flag>
 </dataset>
</datasets>

It’s becoming increasingly common to access datasets on
Amazon S3 from Hadoop. To enable data dependency on datasets
on S3 in Oozie, set the following property:

oozie.service.HadoopAccessorService.
 supported.filesystems

to value hdfs,s3,s3n in the oozie-site.xml file. Also add the jets3t
JAR to the Oozie webapp during Oozie deployment.

Timelines: coordinator versus dataset
So far, we have introduced two independent timelines, one for the coordinator and
one for the datasets. These multiple time-based terminologies might be confusing
and overwhelming, so some clarification will be helpful here. The notion of a coordi‐
nator itself is founded on time and we have introduced a handful of concepts related
to time in the previous chapter. The time parameters explained there helps to manage
the workflow execution and controls things like the start and stop of the action mate‐
rialization and the frequency of materialization. In contrast, the initial-instance
and frequency, introduced in the dataset definition in this chapter, controls a differ‐
ent timeline for the data produced by upstream jobs. These dataset settings might not
have any direct association with the timeline defined for the coordinator itself.

input-events
Whereas datasets declare data items of interest, <input-events> describe the actual
instance(s) of dependent dataset for this coordinator. More specifically, a workflow
will not start until all the data instances defined in the input-events are available.

There is only one <input-events> section in a coordinator, but it can include one or
more data-in sections. Each data-in handles one dataset dependency. For instance,
if a coordinator depends on two different datasets, there will be two data-in defini‐
tions in the input-events section. In turn, a data-in can include one or more data
instances of that dataset. Each data instance typically corresponds to a time interval
and has a direct association with one directory on HDFS.

120 | Chapter 7: Data Trigger Coordinator

http://www.jets3t.org/

A data-in definition needs the following three attributes:

name
Can be used to uniquely identify this data-in section.

dataset
Indicates the name of a dataset that the application depends on. The referred
dataset must be defined in the <datasets> definition section.

The instance definition
Specifies the data instance that the application will wait for. There are two ways to
denote the instance(s). A user can define each instance using an individual
<instance> tag. Alternatively, a user can specify the range of instances using
<start-instance> and <end-instance> tags. Each instance is basically a time‐
stamp that will eventually be used to replace the variables defined in the <uri-
template> of a dataset definition. Defining an absolute timestamp is valid, but it
is neither practical nor convenient for a long-running coordinator. Therefore,
Oozie provides several EL functions (explained later in “Parameterization of
Dataset Instances” on page 124) to conveniently specify the batch instance(s).

In summary, the input-events allows a user to define the list of required datasets
and the corresponding data instances. Example 7-1 shows an <input-events> section
with one <data-in> item. In this example, the data-in, named event_input1, refers
to the last four instances of the dataset using the EL function current() (described in
“Parameterization of Dataset Instances” on page 124). This means that the coordina‐
tor will wait for the previous four batch instances of data coming from the dataset
named ds_input1.

Example 7-1. Input-events section

<input-events>
 <data-in name="event_input1" dataset="ds_input1">
 <start-instance>${coord:current(-4)}</start-instance>
 <end-instance>${coord:current(-1)}</end-instance>
 </data-in>
</input-events>

output-events
In an Oozie coordinator, <output-events> specifies the data instance produced by a
coordinator action. It is very similar to input-events. The similarities and differ‐
ences are explained in Table 7-1.

Expressing Data Dependency | 121

Table 7-1. Similarities and differences between input-events and output-events
Similarities Differences

There can be at most one
<input-events> and one <output-
events> in a coordinator.

There are one or more <data-in> sections under input-events. On
the other hand, there can be only one <data-out> section under
output-events.

There are two attributes (name and data
set) required to define a data-in, as well
as a data-out.

Each data-in contains a single instance or a range of instances.
Conversely, each data-out can contain only one instance and multiple
instances are not allowed.

Like input-events, a user can pass the
output directory to the workflow as well.

Oozie waits for the data instances defined in theinput-events. Oozie
expects and supports the passing of the dependent directories to the
launched workflow. However, Oozie generally doesn’t perform any special
processing like data availability checks for the output-events. Oozie
refers to the output-events mostly for cleaning up the output data
during coordinator reprocessing (discussed in “Coordinator Reprocessing” on
page 224).

The following example shows the declaration of output-events:
<output-events>
 <data-out name="event_output1" dataset="daily-feed">
 <instance>${coord:current(0)}</instance>
 </data-out>
</output-events>

Example: Rollup
This example is an extension of our previous time-triggered coordinator described in
“Our First Coordinator Job” on page 101 with data dependency added to it. The pre‐
vious example executed a workflow once every day. In Example 7-2, we add a new
condition. The workflow runs every day and waits for the previous four instances of a
dataset produced every six hours by an upstream application. The workflow uses the
preceding four instances of a “six-hourly” dataset as input and produces the daily
output. These types of jobs are commonly known as rollup jobs where datasets pro‐
duced in a smaller frequency are combined into a higher frequency.

Example 7-2. A rollup job

<coordinator-app name="my_first_rollup_job" start="2014-01-01T02:00Z"
 end="2014-12-31T02:00Z" frequency="${coord:days(1)}"
 xmlns="uri:oozie:coordinator:0.4">
 <datasets>
 <dataset name="ds_input1" frequency="${coord:hours(6)}"
 initial-instance="2014-12-29T02:00Z">
 <uri-template>
 ${baseDataDir}/revenue_feed/${YEAR}-${MONTH}-${DAY}-${HOUR}

122 | Chapter 7: Data Trigger Coordinator

 </uri-template>
 <done-flag>_trigger</done-flag>
 </dataset>
 </datasets>
 <input-events>
 <data-in name="event_input1" dataset="ds_input1">
 <start-instance>${coord:current(-4)}</start-instance>
 <end-instance>${coord:current(-1)}</end-instance>
 </data-in>
 </input-events>
 <action>
 <workflow>
 <app-path>${appBaseDir}/basic-cron</app-path>
 <property>
 <name>nameNode</name>
 <value>hdfs://localhost:8020</value>
 </property>
 <property>
 <name>jobTracker</name>
 <value>localhost:8032</value>
 </property>
 </workflow>
 </action>
</coordinator-app>

This example XML has two new sections <datasets> and <input-events> that we
discussed in “Defining a dataset” on page 118 and “input-events” on page 120, respec‐
tively. Each coordinator action waits for four dataset directories produced for the
times 2:00, 8:00, 14:00, and 20:00 of the previous day. Figure 7-1 captures these time‐
lines. It’s worth noting there are two independent timelines, one for the coordinator
and one for the dataset. The dataset timeline in Figure 7-1 shows that the data is pro‐
duced every 6 hours by some other process at 2:00, 8:00, 14:00, and 20:00. On the
other hand, the coordinator timeline shows that the coordinator job runs every day at
2:00 a.m. Each coordinator action depends on data from the previous four instances
of the dataset with respect to its nominal time. The nominal time of the action acts as
the bridge between the two timelines. As shown in the figure, the coordinator action
with nominal time 2014-01-01T02:00Z waits for the following dataset instances:

• hdfs://localhost:8020/user/joe/revenue_feed/2014-12-31-02/_trigger

• hdfs://localhost:8020/user/joe/revenue_feed/2014-12-31-08/_trigger

• hdfs://localhost:8020/user/joe/revenue_feed/2014-12-31-14/_trigger

• hdfs://localhost:8020/user/joe/revenue_feed/2014-12-31-20/_trigger

Example: Rollup | 123

Figure 7-1. Coordinator job rolling up six-hourly data into daily data

Parameterization of Dataset Instances
Each coordinator action waits for data instances defined in <data-in>. Each data
instance ultimately needs the absolute timestamp to evaluate the exact directory pro‐
vided in uri-template. Since this timestamp is usually relative to the nominal and
execution times, users often can’t specify it in absolute values. So Oozie provides sev‐
eral EL functions to express and parameterize the data instances. These EL functions
are used to support a variety of complex use cases and hence require close attention.

The instance timestamp primarily depends on two time parameters from the coordi‐
nator action and the dependent datasets. First and foremost, coordinator action’s
nominal time plays a critical role in determining the data instance. coordinator
action’s nominal time, in turn, depends on the time-related attributes in the coordina‐
tor job specifications such as start time and frequency. For example, if the start
time of a coordinator job is cS and the frequency is cF, the nominal time of the nth

coordinator action is calculated as follows (not considering Daylight Saving Time):
 Nominal Time (caNT) = cS + n * cF

Second, the dataset definition has two time attributes, initial-instance (dsII) and fre‐
quency (dsF), which also play an important role in determining the actual data
instance.

Apart from the time attributes just discussed, the instance expressed in the data-in
section of a coordinator XML plays a direct role in determining the actual dependent
data directories. An instance is usually defined using EL functions like current(n),
latest(n), offset(n, timeunit), and future(n). Among them, current(n) is the
most frequently used, followed by latest(n). The usage of offset(n, timeunit)
and future(n) are rare. We will discuss the first two functions in detail here with

124 | Chapter 7: Data Trigger Coordinator

examples (refer to the Oozie coordinator specification for the other, less commonly
used functions).

current(n)
This EL function returns the timestamp of the nth instance of a dataset relative to a
specific coordinator action’s nominal time (caNT). The value of n can be any integer
number. Any negative value for n refers to an instance earlier than the nominal time.
While any positive value for n refers to some instance after the nominal time. The
simplest equation to approximately calculate the timestamp of the nth instance is as
follows:

 current(n) = dsII + dsF * (n + (caNT – dsII) / dsF)

The following example further clarifies the concept with real values. Assume the
coordinator job has the start time of 2014-10-18T06:00Z and a frequency of one day.
This means Oozie will materialize coordinator actions with the following nominal
times (in order): 2014-10-18T06:00Z, 2014-10-19T06:00Z, 2014-10-20T06:00Z, and
so on. Let’s also assume that there are four datasets with the attributes in Table 7-2 to
demonstrate the different scenarios.

Table 7-2. Example datasets
Dataset name Initial instance Frequency

ds1 2014-10-06T06:00Z 1 day

ds2 2014-10-06T06:00Z 12 hours

ds3 2014-10-06T06:00Z 3 days

ds4 2014-10-06T07:00Z 1 day

We explain below how to calculate some of the time instances of these datasets. This
calculation is in the context of the second coordinator action with a nominal time of
2014-10-19T06:00Z.

current(0) of ds1: The current(0) of any dataset specifies the dataset instance/time‐
stamp that is closest to and no later than the coordinator action’s nominal time. In
general, finding current(0) is the first step in understanding any other data instance.
Most instance calculations are based on the coordinator action’s nominal time. Con‐
ceptually, we can start from the dataset’s initial instance and go forward to the coordi‐
nator action’s nominal time with an increment of dataset frequency. In this example,
we start with dsII=2014-10-06T06:00Z and go toward caNT= 2014-10-19T06:00Z
with a frequency of one day. The dataset instances will correspond to 10/6, 10/7, 10/8,
and so on (in order). In this example, the nominal time and the dataset (ds1) initial
timestamp have the same time component (6 a.m.) and that makes the calculation a
little easier. So the closest dataset timestamp is the same as the nominal time and is

Parameterization of Dataset Instances | 125

http://bit.ly/oozie-coord-spec

2014-10-19T06:00Z. Hence this time represents current(0) as well. We can also cal‐
culate the same using the following equation:

current(n) = dsII + dsF * (n + (caNT – dsII) / dsF)
 = 2014-10-06T06:00Z + 1 day x
 (0 + (2014-10-19T06:00Z - 2014-10-06T06:00Z))/ 1 day
 = 2014-10-06T06:00Z + 13 day = 2014-10-19T06:00Z

Similarly, we can calculate current(-1), which is the immediate previous instance of
current(0), and current(1), which is the immediate next instance of current(0).
We also describe the same concept in Figure 7-2.

Figure 7-2. Timestamps of current() EL function for dataset ds1

current(0) of ds3: We use dataset ds3 to explain the same idea in a slightly different
scenario. In this example, the dataset instances starts with dsII=2014-10-06T06:00Z
and moves toward caNT= 2014-10-19T06:00Z with a frequency of three days. Dataset
instances will be 10/6, 10/9, 10/12, 10/15, 10/18, 10/21, and so on (in order). So the
closest instance to nominal time is 10/18, which becomes current(0) for this sce‐
nario. Notably, the nominal time 2014-10-19T06:00Z and current(0) do not exactly
match in this example. Figure 7-3 displays the different data instances including
current(-1), current(1), and so on.

126 | Chapter 7: Data Trigger Coordinator

Figure 7-3. Timestamps of current() EL function for dataset ds3

Table 7-3 shows the return value of current(n) given different values of n for all of
the example datasets in Table 7-2.

Table 7-3. current(n) instances of datasets
Instance ds1 ds2 ds3 ds4

current(0) 2014-10-19T06:00Z 2014-10-19T06:00Z 2014-10-18T06:00Z 2014-10-18T07:00Z

current(-1) 2014-10-18T06:00Z 2014-10-18T018:00Z 2014-10-15T06:00Z 2014-10-17T07:00Z

current(-2) 2014-10-17T06:00Z 2014-10-18T06:00Z 2014-10-12T06:00Z 2014-10-16T07:00Z

current(1) 2014-10-20T06:00Z 2014-10-19T18:00Z 2014-10-21T06:00Z 2014-10-19T07:00Z

Instances before the dataset’s initial-instance: The data instances before the
initial-instance of any dataset doesn’t count. So if the EL function (e.g., current())
refers to any such dataset instance, coordinator doesn’t really check the existence of
that data. In other words, there could be some data on HDFS before the dataset’s
initial-instance as defined in the dataset definition, but Oozie disregards those
data instances. However, Oozie returns an empty ("") string for any such instance.
For instance, current(-14) for dataset ds1 points to 2014-10-05T06:00Z, which is
earlier than the declared initial-instance (2014-10-06T06:00Z) of ds1. In this
case, Oozie returns an empty string ("") without checking for the existence of the
data.

Parameterization of Dataset Instances | 127

During initial testing, users are frequently confused with this
behavior and are often surprised to find that their workflows have
started to run with an empty input path. This usually happens
when the coordinator start time and the dataset initial-instance
are the same or close to each other. This can be solved and the tests
can be made more useful by either moving the dataset’s initial-
instance to an earlier time or by moving the coordinator start
time to a later time.

Scope: The current() EL function is valid only within the <data-in> and <data-
out> sections of a coordinator XML.

latest(n)
This EL function returns the timestamp of the nth latest available dataset. Evaluating
this “latest” available data instance happens with respect to either one of the two
points in time listed here:

present time
The wall-clock time when Oozie evaluates the latest() function

actual time
The time when Oozie actually materializes a coordinator action

Oozie selects this option based on the property oozie.service.ELService.latest-
el.use-current-time defined in the oozie-site.xml file. The default is to evaluate “lat‐
est” based on the action’s actual time.

The latest(n) function does not support positive integers (n) and
cannot be used to look “forward” in time. Unlike the curent(n)
function, specifications like latest(1) and latest(2) are not sup‐
ported.

Nominal versus actual versus present time

Before going further into the explanation of the latest() function, we need to clarify
the newly introduced terms related to time. We are already familiar with the action
nominal time. We just introduced two new terms, present time and actual time.
Present time represents the current wall clock time when the latest evaluation logic
is executed. In other words, if the same latest function is executed multiple times, it
will obviously use different present (wall-clock) times for its dataset evaluations.

On the other hand, the action’s actual time represents the time when the action is
materialized by Oozie. Although this sounds very similar to nominal time, there are

128 | Chapter 7: Data Trigger Coordinator

subtle but important differences. For instance, when a coordinator is delayed and is
running in catch-up mode, an action may be actually created at 6 p.m. but it should
have been ideally created at 2 p.m. In other words, action’s nominal time is 2 p.m., but
the action’s actual time is 6 p.m.

Now let’s also assume this delayed action has a latest() dependency and is checking
and waiting for data availability. For example, at 10 p.m., the coordinator evaluates
the latest() function. At that moment, the present time on the wall clock is 10 p.m.
whereas the nominal time (2 p.m.) and the actual time (6 p.m.) remain unchanged. In
short, the nominal time of an action is always fixed, the actual time becomes fixed
once the action is created, and the present time is always changing and follows the
wall clock.

latest() evaluation

As already mentioned, Oozie evaluates latest(n) based on either the coordinator
action’s actual time or the present wall clock time. Let’s generalize this time as look-
back start time denoted by Tlbs. At first, Oozie determines the closest time instance of
the dataset to Tlbs. Oozie starts from the dataset’s initial-instance (dsII) and incre‐
ments it by the dataset’s frequency (dsF) until it reaches Tlbs. Let’s assume the closest
timestamp value to Tlbs is determined to be Tds. Oozie first checks if the data directory
for time Tds is available. If it is available, it will consider it as the first available data
instance or latest(0). If the data for Tds is not available yet, Oozie will walk back and
look for data for time Tds - dsF (dataset frequency). If that data is available, Oozie
will consider this second time instance as the first available data instance or
latest(0). If data is not available for that instance as well, Oozie will skip it and keep
walking back.

Continuing with this example, if all previous data instances are available, the nth avail‐
able instance (latest(n)) will be the data instance for time Tds - n x dsF. If any one
data instance between time Tds and Tds - n x dsF is not available for whatever rea‐
son, Oozie needs to look back further to find (latest(n). If it can’t get to the nth

instance after searching backward all the way to the initial-instance of the dataset
(dsII), Oozie will go to sleep and start the evaluation process again in the next cycle
starting with the calculation of the time Tlbs. Finally, when Oozie finds the nth avail‐
able instance, it returns the corresponding timestamp.

The following detailed example attempts to further clarify the concept with real val‐
ues. Assume the coordinator job specifies the start time as 2014-10-18T06:00Z and
the frequency as one day. Oozie materializes the first coordinator action with a nomi‐
nal time of 2014-10-18T06:00Z.

Let’s further assume that the dependent dataset has the following attributes:

• Initial-instance = 2014-10-06T06:00Z

Parameterization of Dataset Instances | 129

• frequency = 1 day
• uri-template = hdfs://foo:8020/logs/${YEAR}-${MONTH}-${DAY}

Let’s consider the scenario where Oozie is evaluating latest()for this dataset at two
different times on the wall clock: 2014-10-19T10:00Z and 2014-10-19T11:00Z. At
these times, let’s also assume that the actual data availability is as it appears in
Table 7-4.

Table 7-4. Data availability at time t
Wall Clock Time = 2014-10-19T10:00Z Wall Clock Time = 2014-10-19T11:00Z

hdfs://foo:8020/logs/2014-10-19 hdfs://foo:8020/logs/2014-10-19

Missing hdfs://foo:8020/logs/2014-10-18

Missing Missing

hdfs://foo:8020/logs/2014-10-16 hdfs://foo:8020/logs/2014-10-16

Missing Missing

hdfs://foo:8020/logs/2014-10-14 hdfs://foo:8020/logs/2014-10-14

Table 7-5 shows the return value of the latest(n) timestamp for various values of n
given the above example scenario. The example assumes that the property
oozie.service.ELService.latest-el.use-current-time is set to true. In other
words, it utilizes the present wall-clock time (instead of the actual time) in evaluat‐
ing latest().

Table 7-5. latest(n) instances at time t
Instance Wall Clock Time = 2014-10-19T10:00Z Wall Clock Time = 2014-10-19T11:00Z

latest(0) 2014-10-19T06:00Z 2014-10-19T06:00Z

latest(-1) 2014-10-16T06:00Z 2014-10-18T06:00Z

latest(-2) 2014-10-14T06:00Z 2014-10-16T06:00Z

latest() at 10 a.m.: At first, Oozie determines the closest timestamp that could be
the candidate for latest(0). It starts from 2014-10-06T06:00Z (dataset initial-
instance, dsII) and increments the timestamp using the frequency (dsF) until it rea‐
ches the present time (2014-10-19T10:00Z). In this example, that instance evaluates
to 2014-10-19T06:00Z and that’s where Oozie starts its data availability checks. Since
the data from 10/19 is available at wall-clock time 10 a.m., that instance is determined
to be the latest(0). But for latest(-1), Oozie looks for the 10/18 data, which is
actually missing at wall-clock time 10 a.m. So Oozie continues to look backward and
finds there is no data for 10/17 either. However, it finds data for 10/16 and returns
that as the latest(-1). Using the same approach, it looks backwards for latest(-2)

130 | Chapter 7: Data Trigger Coordinator

and skips 10/15 due to missing data. Oozie finally finds data in 10/14 and returns that
instance as the latest(-2). We demonstrate this pictorially in Figure 7-4.

Figure 7-4. Timestamps of latest() EL function at wall-clock time 10 a.m.

latest() at 11 a.m.: The only context change between wall clock time 10 a.m. and 11
a.m. is the arrival of new data for 10/18. This changes the timestamp evaluations for
latest(-1) and latest(-2). Specifically, if Oozie evaluates at 11 a.m., it will return
10/18 as latest(-1) and 10/16 as latest(-2).

Scope: The latest() EL function is valid only within the <data-in> and <data-
out> sections of the coordinator XML.

Comparison of current() and latest()
The latest() and current() functions have subtle but important differences. It’s
important that you have a good understanding of both these concepts so that you can
pick the correct EL function for your application. Broadly, if you want to process the
same dependent datasets irrespective of when the job executes, you should use
current(). In other words, for every run for a specific nominal time if you want to
process the same input datasets, the right function is current(). For example, if you
execute the February 1, 2014 instance of your job and always want to process the pre‐
vious 3 days of data (i.e., 01/29/14. 01/30/2014, and 01/31/2014), you should use the
current() EL function. On the other hand, if you want to process the latest available
data at the time of execution irrespective of the nominal time, you should use the
latest() function. Note that if you run the same coordinator action multiple times,
your job may end up processing different datasets with latest(). With the preceding
example, if you run the job on February 14, 2015 and use current(), you will still
process the same three days (01/29/2014, 01/30/2014, and 01/31/2014) of data. On
the other hand, if you use latest(), Oozie will pick more recent datasets, probably

Parameterization of Dataset Instances | 131

02-11-2015, 02-12-2015, and 02-13-2015 if they are available. Table 7-6 compares
some of the key properties of these two functions.

Table 7-6. current() versus latest() comparison
Topics current(n) latest(n)

Data checking starts
from

Action nominal time Action actual time OR the present wall clock
time

Fixed versus Variable Fixed. Returns the same timestamp for the same
action irrespective of when it checks.

Variable. Returns different timestamps based
on when the check happens.

Gaps in data
availability

Disregards gaps in data availability. Always returns
the same instance(s) of data for a given action and
does not skip any data whether it exists or not.

Accounts for the gaps in data availability. Skips
missing data instances. Only considers the
available instances.

Range of ‘n’ Any integer Only ‘0’ OR negative integer.

Parameter Passing to Workflow
An Oozie workflow, launched by a coordinator action, doesn’t directly deal with any
time-dependent parameters such as nominal time or actual time. The coordinator
primarily deals with these aspects. Nevertheless, workflows frequently need those
parameters for its execution. For instance, the dependent data directories checked by
a coordinator action is typically directly used by some workflow action as input.
Therefore, Oozie provides the following EL functions to easily pass those parameters
to the launched workflow. The workflow can refer to the parameters as EL variables
in its XML definition.

dataIn(eventName):
This function evaluates all input data directories of a dataset for a specific time
instance and returns the directories as a string. The dataIn() function doesn’t really
check if the data is available or not. This function takes eventName as a parameter.
First, Oozie identifies data-in from the input-events definition using the
eventName. Second, Oozie finds the name of the dataset from the data-in definition.
Last, Oozie takes the uri-template from the dataset definition and resolves the paths
corresponding to the particular time instance. Oozie evaluates the time instance
based on nominal time and the instance number defined in the EL function. We
already saw the details of this process in “Parameterization of Dataset Instances” on
page 124. If there are multiple instances (e.g., current(0), current(-1), etc.) in
data-in, Oozie concatenates them using , as a separator.

For instance, consider the EL function ${coord:dataIn('event_input1')} in the
context of the example dataset and input-events defined in “Defining a dataset” on
page 118 and “input-events” on page 120, respectively. Let’s also assume the nominal

132 | Chapter 7: Data Trigger Coordinator

time of the coordinator action is 2015-01-01T02:00Z. Using the event name
event_input1, Oozie initially determines the corresponding dataset name ds_input1
from the data-in definition. Then using the nominal time and instance count (such
as -1 for current(-1)), Oozie calculates the exact time instance of the data and ulti‐
mately resolves the uri-template defined in the dataset. For example, current(-1)
returns 2014-12-31T20:00Z for this coordinator action. Finally, Oozie resolves the
uri-template with this time instance and evaluates the final directory as hdfs://local‐
host:8020/user/joe/revenue_feed/2013-12-31-20. Oozie follows the same process for
each current instance and concatenates them with a comma (,). The EL function
dataIn() finally returns the following string:

 hdfs://localhost:8020/user/joe/revenue_feed/2014-12-31-02,
 hdfs://localhost:8020/user/joe/revenue_feed/2014-12-31-08,
 hdfs://localhost:8020/user/joe/revenue_feed/2014-12-31-14,
 hdfs://localhost:8020/user/joe/revenue_feed/2014-12-31-20

You could take the input directory and add wildcards to it in the
workflow XML. For example, /part*. This will work well for a sin‐
gle directory returned, but for a list like the one shown above, the
wildcard will be added only to the last directory in the list, and this
probably is not what you want.

Scope: dataIn() is valid within the <workflow> section of a coordinator XML.

dataOut(eventName)
This function is similar to dataIn(). The key difference is that dataOut() utilizes the
output-events and data-out sections whereas the dataIn() uses input-events and
data-in .

Scope: dataOut() is valid within the <workflow> section of a coordinator XML.

nominalTime()
This function returns the nominal time or the action creation time (explained in sec‐
tion “Our First Coordinator Job” on page 101) of a particular coordinator action.

Scope: nominalTime() is valid within the <workflow> section of a coordinator XML.

actualTime()
This function calculates the actual time of a coordinator action as defined in “Param‐
eterization of Dataset Instances” on page 124. In an ideal world, the nominal time

Parameter Passing to Workflow | 133

and the actual time of an action will be the same. But during catch-up scenarios,
where the coordinator action execution is delayed, the actual time of a coordinator
action is different and later than its nominal time.

Scope: actualTime() is valid within the <workflow> section of a coordinator XML.

dateOffset(baseTimeStamp, skipInstance, timeUnit)
This utility function returns a date as a string using the base time and offset. Oozie
calculates the new date using the following equation (not considering Daylight Saving
Time).

New Date = baseTimeStamp + skipInstance * timeUnit

Scope: dateOffset() is valid within the <workflow> section of a coordinator XML.

formatTime(timeStamp, formatString)
This utility function formats a standard ISO8601 compliant timestamp into another
timestamp string based on formatString. The formatString should follow the con‐
ventions used in Java’s SimpleDateFormat .

Scope: formatTime() is valid within the <workflow> and <input-events> sections of
a coordinator XML.

A Complete Coordinator Application
We now extend the rollup window example described in “Example: Rollup” on page
122. The additional features of this example include the following:

• Extensive parameterization using appropriate EL functions
• Demonstration of the EL functions to pass parameters to the launched workflow

The example code is as follows:
<coordinator-app name="my_rollup_job" start="2014-01-01T02:00Z "
 end="2014-12-31T02:00Z” frequency="${coord:days(1)}"
 xmlns="uri:oozie:coordinator:0.4">
 <datasets>
 <dataset name="ds_input1" frequency="${coord:hours(6)}"
 initial-instance="2013-12-29T02:00Z">
 <uri-template>
 hdfs://localhost:8020/user/joe/revenue_feed/${YEAR}-${MONTH}-${DAY}-
 ${HOUR}
 </uri-template>
 <done-flag>_trigger</done-flag>
 </dataset>
 <dataset name="daily-feed" frequency="${coord:days(1)}"

134 | Chapter 7: Data Trigger Coordinator

http://en.wikipedia.org/wiki/ISO_8601
http://bit.ly/oozie-simpledateformat

 initial-instance="2013-12-29T02:00Z">
 <uri-template>
 hdfs://localhost:8020/user/joe/revenue_daily_feed/${YEAR}-${MONTH}-
 ${DAY}
 </uri-template>
 </dataset>
 </datasets>
 <input-events>
 <data-in name="event_input1" dataset="ds_input1">
 <start-instance>${coord:current(-4)}</start-instance>
 <end-instance>${coord:current(-1)}</end-instance>
 </data-in>
 </input-events>
 <output-events>
 <data-out name="event_output1" dataset="daily-feed">
 <instance>${coord:current(0)}</instance>
 </data-out>
 </output-events>
 <action>
 <workflow>
 <app-path>${myWFHomeInHDFS}/app</app-path>
 <property>
 <name>myInputDirs</name>
 <value>${coord:dataIn('event_input1')}</value>
 </property>
 <property>
 <name>myOutputDirs</name>
 <value>${coord:dataOut('event_output1')}</value>
 </property>
 <property>
 <name>myNominalTime</name>
 <value>${coord:nominalTime()}</value>
 </property>
 <property>
 <name>myActualTime</name>
 <value>${coord:actualTime()}</value>
 </property>
 <property>
 <name>myPreviousInstance</name>
 <value>${coord:dateOffset(coord:nominalTime(), -1, 'DAY')}</value>
 </property>
 <property>
 <name>myFutureInstance</name>
 <value>${coord:dateOffset(coord:nominalTime(), 1, 'DAY')}</value>
 </property>
 <property>
 <name>nameNode</name>
 <value>hdfs://localhost:8020</value>
 </property>
 <property>
 <name>jobTracker</name>
 <value>localhost:8032</value>

A Complete Coordinator Application | 135

 </property>
 </workflow>
 </action>
</coordinator-app>

For evaluating the function dataIn(), Oozie uses the event name event_input1 that
was passed in to find the dataset ds_input1 from the data-in definition. After trans‐
lating the myInputDirs into an actual list of directories, Oozie passes it to the
launched workflow where the workflow refers to it using the variable ${myInput
Dirs}. Workflows generally use this as input data for its actions.

For the first coordinator action, Oozie returns 2014-01-01T02:00Z as the value of
myNominalTime. For the second action, myNominalTime is 2014-01-02T02:00Z.

For the second action with nominal time 2014-01-02T02:00Z, the value of
myPreviousInstance is 2014-01-01T02:00Z, and the value of myFutureInstance is
2014-01-03T02:00Z.

The value of property myOutputDir is resolved as hdfs://localhost:8020/
user/joe/revenue_daily_feed/2014-01-01 for the first coordinator action with
nominal time 2014-01-01T02:00Z. Again, this variable is passed to the workflow
where it is often used as application output.

This concludes our explanation of data availability triggers, which is as important as
time-based triggers for the Oozie coordinator. This chapter, along with the previous
chapter, discusses the details of a coordinator application in a comprehensive fashion.
We covered when and how to launch a workflow based on user-defined time and data
triggers. In the next chapter, we will introduce another abstraction on top of the coor‐
dinator called the bundle, which helps users easily manage multiple coordinator jobs.

136 | Chapter 7: Data Trigger Coordinator

CHAPTER 8

Oozie Bundles

Leading up to this chapter, we have covered two important and basic Oozie concepts,
namely the workflow and the coordinator, and everything that goes into authoring
and implementing them. Workflows are at the core of any Oozie application and
coordinators are the next level of abstraction that allows the orchestration of these
workflows through time and data triggers, as explained in Chapters 6 and 7. In this
chapter, we will cover Oozie bundles, the highest level of abstraction in Oozie that
helps users package a bunch of coordinator applications into a single entity, often
called a data pipeline.

Bundle Basics
Oozie’s evolutionary path gives us a lot of context on how bundles were born. Oozie
version 1.0 was all about workflows and the basic features around it. Version 2.0
introduced coordinators and triggers. Bundle became the next step for Oozie and
was introduced in version 3.0. As you can see, there is a nice rhythm to this evolu‐
tionary arc and users wanted higher abstractions and more features for a Hadoop-
based workflow engine at every stage. Bundle was the direct result of users wanting
Oozie to support large data pipelines involving many workflows with complex inter‐
dependencies.

Bundle Definition
An Oozie bundle is a collection of Oozie coordinator applications with a directive on
when to kick off those coordinators. As with the other parts of Oozie, bundles are
also defined via an XML-based language called the Bundle Specification Language.
Bundles can be started, stopped, suspended, and managed as a single entity instead of
managing each individual coordinator that it’s composed of. This is a very useful level
of abstraction in many large enterprises. These data pipelines can get rather large and

137

complicated, and the ability to manage them as a single entity instead of meddling
with the individual parts brings a lot of operational benefits. Figure 8-1 shows a pic‐
torial representation of an Oozie bundle.

Figure 8-1. Oozie bundle

As the picture suggests, a bundle is designed to contain one or more coordinators.
Bundles don’t support any explicit definition or management of dependencies
between the coordinators, but they can wait on each other implicitly through the data
dependency mechanism that the coordinator supports. For example, coordinator C
can wait on datasets generated by coordinator A and B. This is how data pipelines are
implemented in Oozie using coordinators and bundles.

Why Do We Need Bundles?
Some users, when exposed to the concept of an Oozie bundle for the first time, are a
little confused about its usefulness and necessity. Users need and want to run work‐
flows. They also understand the coordinator and its features. But the benefits of an
Oozie bundle are not readily apparent. So it might be instructive to go through some
concrete use cases and the value of using an Oozie bundle in those example scenarios.
bundles are basically available for operational convenience more than anything else.

Let’s look at a typical use case of a rather large Internet company that makes its reve‐
nue through advertising and ad clicks. Let’s say that Apache web logs are collected in
a low-latency batch and delivered to the backend. The data pipeline then picks it up
and kicks off a variety of processing on it. The list of applications using this input log
data include but is not limited to the following workflows:

138 | Chapter 8: Oozie Bundles

• There is one workflow that counts ad clicks, calculates the cost to the advertiser
account IDs, does some basic comparisons to the same time of the day last week
to make sure there are no abnormalities, and publishes a revenue feed. This
workflow is called the Revenue WF and runs every 15 minutes.

• There is a Targeting WF that looks at the user IDs corresponding to the ad clicks
and does some processing to segment them for behavioral AD targeting. This
workflow also runs every 15 minutes, but it satisfies a completely different busi‐
ness requirement than the revenue WF and is developed and managed by another
team.

• There is an Hourly workflow called the AD-UI WF that rolls up the 15 minute rev‐
enue feeds generated by the revenue WF and pushes a feed to a operational data‐
base that feeds an advertiser user interface. This UI is where advertisers and
customers log in and track their AD expenditure at an hourly grain.

• There is a Reporting WF that runs daily in the morning to aggregate a lot of the
data from the previous day and generate daily canned reports for the executives
of the company.

• Last but not the least, the advertiser billing logic and the SOX (Sarbanes–Oxley)
compliance checks run monthly because that’s when the larger advertisers
actually get a bill and are expected to pay. They don’t actually pay daily or hourly.
This makes up the Billing WF and involves monthly aggregations and rollups.

Given the varied use cases detailed here, you can see how the entire, consolidated
data pipeline can get rather complex. There are several moving parts and interdepen‐
dencies, though these individual use cases seem to fit nicely into individual Oozie
workflows. There will be corresponding coordinator apps that take care of the neces‐
sary time and data triggers for these workflows. The same input dataset (weblogs)
drives all of the processing, but different groups within the company actually own
specific business use cases. Table 8-1 summarizes these workflows and their time fre‐
quency and business owners.

Table 8-1. Business use cases and their workflows
No. Workflow name Workflow frequency Business unit

1 Revenue WF 15 minutes AD Operations

2 Targeting WF 15 minutes Behavioral Targeting

3 AD-UI WF Hourly AD Operations

4 Reporting WF Daily Business Intelligence

5 Billing WF Monthly Accounting

Bundle Basics | 139

http://bit.ly/oozie-sox

In addition to the time frequency, the workflows also have data dependencies among
them. For instance, the monthly billing WF will be dependent on the entire month’s
worth of revenue feeds from the AD-UI WF, which itself is dependent on the output of
the revenue WF. These dependencies can be specified via the coordinator app like we
saw in Chapter 6. Bear in mind that there is a one-to-one correspondence between a
coordinator app and the workflow it runs. So a coordinator by definition cannot run
two workflows of different frequencies as part of one job.

Assuming the layout of coordinator and workflow apps as defined in the previous
paragraph, let’s look at some failure scenarios that are common in such a complex
data pipeline. Let’s say the operations team finds out at 11 p.m. on March 31 that
some of the data for that day is missing. Specifically, there was a network hiccup that
caused some silent data loss in the previous four hours starting at 7 p.m. It is finally
detected and a high-priority alert is issued. Many operations teams across the organi‐
zation get into an emergency mode to fix the issue. Once the issue is fixed, the old
data that’s missing will be delivered to the data pipeline. But the pipeline is long done
with hours 7 through 9 and is minutes away from kicking of the hourlies for the 10
p.m. hour. And we are also pretty close to the dailies kicking off and the monthly bill‐
ing is not too far either, as this is the last day of the month. There is no point kicking
off the daily and monthly jobs without completing the reprocessing of the last four
hours. The operations team has to stall all those coordinator jobs and reprocess the
15-minute and hourly ones from the last four hours. The coordinator has the right
tools and options for suspending, starting, and reprocessing all those jobs, but it’s a
lot of manual work for the data pipeline operations team responsible for all these
coordinator jobs. As we all know, manual processing is quite error-prone.

This is exactly where the bundle comes in. If they had defined the entire data pipeline
as a bundle, the life of the operations team becomes a lot easier. They can stop the
bundle, and all processing for all coordinators stops right away with one command.
They can then handle what needs to be reprocessed through Oozie tools (refer to
“Reprocessing” on page 222 for more details). Reprocessing will require some diligent
analysis, but some of this reprocessing can happen at the bundle level as well. Bundle
level reprocessing features are being developed and released in increments at the time
of writing this book. So check your specific Oozie version for details. When it’s time
to restart the pipeline, they can again do it with one command and Oozie bundle will
take care of the rest.

As you can see, bundles are a very powerful abstraction, and for certain high-end use
cases, they add a lot of operational flexibility and convenience.

Bundle Specification
Let’s now look at the actual bundle specification. As with the other parts of Oozie,
bundle specification is also XML based. It borrows and leverages all the concepts of

140 | Chapter 8: Oozie Bundles

the pipeline definition language, variable substitution, and parameterization that we
have covered thus far in the book. bundle specification is a lot less complicated and
has fewer elements than the workflow and the coordinator. Figure 8-2 captures the
elements that make up a bundle pretty concisely. The optional elements are repre‐
sented by boxes enclosed by dotted lines.

Figure 8-2. Bundle Specification

The optional <parameters> section serves the same purpose as it does for the work‐
flows as explained in “The <parameters> Section” on page 92. That’s the section
where you can declare bundle parameters and optionally add default values so Oozie
can check for the variables before running the bundle. The <controls> section is
optional and the <kick-off-time> is when you want the bundle to be started and
run. It’s explained in detail in the next section. A given bundle can have one or more
coordinators as shown in the picture above. Each coordinator has a name and an
application path with an optional <configuration> section. The <configuration>
section is similar to what we have seen throughout this book.

Execution Controls
Kick-off time: The only real bundle-specific control element that Oozie supports is the
<kick-off-time>. This determines when a submitted bundle should actually be run.

Bundle Specification | 141

Let’s assume you are submitting the Oozie jobs via the CLI. Regardless of whether the
job is a workflow, coordinator, or a bundle, the interface is the same. You can submit
a bundle using ""oozie job –submit" or directly run it using "oozie job -run". If
you execute "-run", Oozie will run the bundle regardless of the <kick-off-time>,
which will basically be ignored. But if you invoke "-submit", the bundle will be sub‐
mitted, but Oozie will not run it until the <kick-off-time> is reached. The bundle
will be in PREP state until then. The figure below from the Oozie’s bundle UI shows
you the state of the bundle when the <kick-off-time> has not been reached yet. As
you can see, the coordinator list in the bottom half of the figure is empty because the
coordinators have not yet been submitted by the bundle, which is still waiting to kick
off.

Figure 8-3. Bundle Kick-off Time

If the <kick-off-time> is not specified, the bundle submit and run behave the same
and the job will be run “now” as soon as it is submitted. Do keep in mind that the
coordinators being invoked by this bundle could also be time triggered. The bundle
<kick-off-time> is different from the coordinator start time and orthogonal to the
schedule of the coordinator(s) included. The bundle does not even submit the coordi‐
nators until the kick-off time. Once submitted, the coordinator instances could run
right away or wait depending on the time dependencies at the coordinator level.

142 | Chapter 8: Oozie Bundles

Example 8-1 shows an example of a real bundle and as you can see, the specification
is pretty simple and straightforward.

Example 8-1. Bundle application

<bundle-app name='bundle-example' xmlns:xsi='http://www.w3.org/2001/
 XMLSchema-instance'xmlns='uri:oozie:bundle:0.2'>
 <parameters>
 <property>
 <name>start</name>
 </property>
 <property>
 <name>end</name>
 <value>2014-12-20T10:45Z</value>
 </property>
 </parameters>
 <controls>
 <kick-off-time>2014-12-20T10:30Z</kick-off-time>
 </controls>
 <coordinator name='coord-1'>
 <app-path>${nameNode}/user/apps/coord-1/coordinator.xml</app-path>
 <configuration>
 <property>
 <name>start</name>
 <value>${start}</value>
 </property>
 <property>
 <name>end</name>
 <value>${end}</value>
 </property>
 </configuration>
 </coordinator>
 <coordinator name='coord-2'>
 <app-path>${nameNode}/user/apps/coord-2/coordinator.xml</app-path>
 <configuration>
 <property>
 <name>start</name>
 <value>${start}</value>
 </property>
 <property>
 <name>end</name>
 <value>${end}</value>
 </property>
 </configuration>
 </coordinator>
</bundle-app>

Bundle Specification | 143

When using bundles, make sure the coordinator definition is using
the Oozie schema version 0.2 (xmlns="uri:oozie:coordinator:
0.2") or higher. Bundle execution will fail if the included coordina‐
tors are still conforming to version 0.1.

As always, the bundle specification has to be copied to HDFS. The configuration to
the Oozie command line is passed via a job.properties file. An example properties file
for Example 8-1 is shown in Example 8-2.

Example 8-2. The job.properties file for the bundle

 nameNode=hdfs://localhost:8020
 jobTracker=localhost:8032
 oozie.bundle.application.path=${nameNode}/user/apps/bundle/
 start=2014-12-20T10:45Z
 end=2014-12-30T10:45Z

Bundles are invoked just like workflows and coordinators, using the same interfaces.
If you are using the Oozie CLI, the commands in Example 8-3 work for bundles, too.
The oozie.bundle.application.path variable in the job.properties tells Oozie that
this is a bundle application.

Example 8-3. CLI commands for bundles

 $ oozie job -config job.properties -submit
 job: 0000056-141219003455004-oozie-oozi-B

 $ oozie job 0000056-141219003455004-oozie-oozi-B -run
 $ oozie job 0000056-141219003455004-oozie-oozi-B –suspend
 $ oozie job 0000056-141219003455004-oozie-oozi-B -resume

 $ oozie job -info 0000046-141219003455004-oozie-oozi-B
 Job ID : 0000046-141219003455004-oozie-oozi-B
 --
 Job Name : test-bundle
 App Path : hdfs://nn.mycompany.com:8020/user/joe/oozie/test_bundle/
 Status : SUCCEEDED
 Kickoff time : Tue Dec 20 10:30:00 UTC 2014
 --
 Job ID Status Freq Unit
 Started Next Materialized
 --
 0000047-141219003455004-oozie-oozi-C SUCCEEDED 1 DAY
2014-12-20 10:30 GMT 2014-12-20 10:30 GMT
 --

144 | Chapter 8: Oozie Bundles

Bundle State Transitions
Figure 8-4 captures the state transitions that an Oozie bundle goes through in detail.
START, RUNNING, SUSPENDED, PAUSED, SUCCEEDED, FAILED, and KILLED are the most
important and the most common states you will encounter. Users are rarely exposed
to some of the other states in the picture, though they are all processed internally as
part of the state management. The bundle states are pretty self-explanatory and are
very similar to the states for the workflow and the coordinator that we have already
seen.

Figure 8-4. Bundle states

Any state management operation you perform on the bundle, like
suspending or killing it, will be propagated to the coordinators and
workflows that are part of that bundle as well. They will also get
killed or suspended or resumed implicitly. This is one of the bene‐
fits of using Oozie bundles.

In this chapter, we covered the Oozie bundle in detail. It’s not a complicated topic for
application developers, but more of an operational concept. We encourage you to use
the bundle construct to better manage your data pipelines. With this chapter, we are

Bundle State Transitions | 145

done covering all of the fundamental Oozie concepts in the form of workflows, coor‐
dinators, and bundles. You should be able to write and operate complete Oozie appli‐
cations at this point. We will now look at more advanced topics starting with the next
chapter and through the rest of this book.

146 | Chapter 8: Oozie Bundles

CHAPTER 9

Advanced Topics

In the previous chapters, we largely focused on Oozie’s three abstractions: workflow,
coordinator, and bundle. In particular, we explained the basic and common usage of
those abstractions. In this chapter, we discuss some of the advanced concepts con‐
cerning the workflow and the coordinator. More specifically, we present how to man‐
age JARs for Oozie workflows and how to execute MapReduce jobs written using the
new Hadoop API. We also elaborate on the security features in Oozie. As for the
coordinator, we demonstrate how to use cron type scheduling and how to support
HCatalog-based data dependency.

Managing Libraries in Oozie
In general, managing different JARs while allowing users the flexibility to include
their own custom JARs for their applications is a challenge for any Java-based system.
In the previous chapters, we briefly covered some simple examples of JAR manage‐
ment in Oozie. We will discuss a few other important scenarios in this section.

Origin of JARs in Oozie
Before going into the details of JAR management, let’s see the different types of JARs
Oozie needs to maintain. The JARs in Oozie largely come from the following sources:

System JARs
This includes Oozie’s system JARs that run Oozie services. These JARs are gener‐
ated during an Oozie build and included as part of the Oozie web application
archive (oozie.war) file, as discussed in “Install Oozie Server” on page 26.

Hadoop JARs
These JARs are required for Oozie to communicate to Hadoop services. Hadoop
produces these JARs and Oozie injects them into the web application archive

147

(oozie.war) during packaging (also discussed in “Install Oozie Server” on page
26).

Action JARs
These JARs are required to execute the built-in Oozie actions (e.g., Pig, Hive,
DistCp, etc.). The first part of this chapter focuses primarily on these JARs.

User JARs
These JARs are produced by end users to execute their application logic. For
example, mapper and reducer classes required for MapReduce action, Pig/Hive
UDF code, and custom Java classes for Java action. Users usually bundle and
deploy their JARs into the lib/ directory under the workflow application path, as
we discussed in “Application Deployment Model” on page 20. In “Supporting the
User’s JAR” on page 152, we present an alternative and efficient approach to
include user JARs into Hadoop applications.

Design Challenges
As mentioned earlier, designing a flexible and intuitive framework for JAR manage‐
ment in a complex system like Oozie is very tricky. Here are some of the reasons for
this:

Multiple action types
Oozie has to deal with different types of built-in and user-defined actions. Each
action type needs a different set of JARs and in some cases, they might conflict
with each other. For example, Pig and Hive need their respective set of JARs, and
some common JARs may not be compatible with each other. In addition, when
only one action type is needed for an application, Oozie should include only the
required JARs for that action. In other words, Oozie should reduce the overhead
of JAR distribution by not including unnecessary JARs.

Multiple versions
One action type can support multiple versions of the same tool. For example, one
user might want to run Pig 0.11 through the Pig action while another user wants
Pig 0.13. To address this, Oozie should provide a framework to support the most
common versions of each tool it supports.

Different Hadoop versions
Since most of the actions are directly related to Hadoop, the version of Hadoop
plays a critical role in the context of JAR management. For instance, a JAR com‐
piled against Hadoop version 1.x might not run on a Hadoop 2.x cluster. For
example, Pig 0.11 compiled against Hadoop 1.x does not work on a Hadoop 2.x
cluster. Oozie should provide a framework to handle this type of variability as
well.

148 | Chapter 9: Advanced Topics

Seamless jar upgrade
Upgrading JARs is the norm rather than an exception in the Hadoop ecosystem.
For example, Oozie supports Pig 0.11. Let’s say there is an important bug fix
added to Pig 0.11, and Oozie needs to replace or upgrade this JAR. A straightfor‐
ward replacement of this JAR file can cause running jobs to fail because of the
way the Hadoop distributed cache works. Oozie should provide an easy and safe
way to upgrade JARs.

Flexibility
It’s inconvenient to explicitly include all the common JARs for each application,
so Oozie should package these common JARs of each action type at the system
level. Furthermore, a user should be able to specify a different JAR version for
each action to override the default. Basically, Oozie should support multiple ver‐
sions of the same tool at the system level, and at the same time, it should allow
users to override those system-provided JARs with user-specific JARs. This level
of flexibility makes the design and interface complex.

Managing Action JARs
Oozie supports built-in actions such as Pig, Hive, DistCp, Hadoop streaming, Sqoop,
and others. These are either independent products in the Hadoop ecosystem or arti‐
facts generated by core Hadoop. For user convenience, it is recommended that Oozie
admin provide and manage these JARs. In Oozie, the system-provided JARs are
known as sharelib. In this section, we describe how an admin can manage the share
lib in an Oozie instance.

Although most of the sharelib management work is tackled by the Oozie admin, the
end user needs to explicitly specify if she wants to use the system-provided sharelib.
In general, the user defines oozie.use.system.libpath=true in the job.properties file
used during job submission. Since this setting was added much later, Oozie sets the
property value to false by default to maintain backward compatibility.

If the action-specific JARs are missing in the classpath, you might
see a java.lang.ClassNotFoundException or java.lang.NoClass
DefFoundException message in either the Oozie or the Hadoop job
log. The common cause for this type of error is either that the
sharelib is missing or has not been installed properly for that par‐
ticular action.

How to get the JARs?
The Oozie distribution’s TAR file mentioned in “Build Oozie” on page 25 contains
another TAR file (oozie-sharelib-4.0.1.tar.gz), which contains all the common JARs
required to support different action types. The JARs for each action type are organ‐

Managing Libraries in Oozie | 149

ized under a separate subdirectory. Oozie packages the most commonly used versions
of each action type. For instance, the Oozie 4.0.1 sharelib by default includes
Hadoop-1.x-compatible Pig 0.10.1 and Hive 0.10.0 JARs. If you want to build a differ‐
ent version (e.g., Hadoop-2.x-compatible JARs), you need to build it using specific
options in the build command line. For example, if you want Pig 0.12.0 for a Hadoop
2.x cluster, you can do the following to build it:

$ bin/mkdistro.sh –DskipTests –Dpig.version=0.12.0 –Phadoop-2

For most customers, the bundled sharelib JARs are good enough because the Oozie
team puts a lot of thought into packaging the most appropriate JARs for the ecosys‐
tem tools at the time of the release. However, there are cases where it doesn’t work
well. Some of the possible problems and their solutions are explained here:

Bundled version versus required version
In some cases, the version of a product that comes with the Oozie TAR file and
the version being used at a particular customer’s environment may not match.
For example, the customer might only support Pig 0.11 whereas the bundled ver‐
sion with Oozie is Pig 0.12. Administrators can collect the JARs required for Pig
0.11 from the Pig distribution, build the required version from the released
source code, or copy from $PIG_HOME/lib directory of their Pig 0.11 installa‐
tion. The same is true for similar products like Hive, Sqoop, and the like.

Hadoop 1.x versus Hadoop 2.x
For some JARs, Hadoop 1.x and Hadoop 2.x are not compatible. Oozie 4.0.1 by
default includes Hadoop-1.x-compliant Pig and Hive JARs. So the admin might
have to gather the set of Hadoop-2.x-compliant JARs either by manually building
them from the respective code branch, by collecting it from the released artifact,
or by using the previously mentioned Oozie build command. In this case, it is
recommended that the admin consult the respective product’s build and release
process.

Installing sharelib
As mentioned in “Shared Library Installation” on page 34, we need to untar the bun‐
dled sharelib and then upload it to a HDFS directory. For Oozie 4.0.1 and earlier,
the following commands, when executed as user oozie, would do the task (for version
4.1.0 and later, users can’t use these commands and are advised to consult “Sharelib
since version 4.1.0” on page 35):

$ tar xvf oozie-sharelib-4.0.1.tar.gz
$ hdfs dfs –put share share

150 | Chapter 9: Advanced Topics

By default, the sharelib points to the HDFS
directory /user/${oozie_service_user}/share/lib. If you want to
change the default location, you can do so by overriding the
property oozie.service.WorkflowAppService.system.libpath
in oozie-site.xml. You need to make sure the directory has read and
write permissions for the Oozie service user (typically oozie) and
read permissions for all the other users (hdfs dfs -chmod 755
<PATH> should work).

Overriding/upgrading existing JARs
As mentioned in “How to get the JARs?” on page 149, there are various reasons for
needing to override the bundled JARs after the installation of the sharelib. There are
two solutions and we illustrate them using Pig JARs as an example. Let’s assume for
the following example that Pig 0.11 is not bundled with Oozie and the users want to
use Pig 0.11:

• The Oozie administrator can manually replace the Pig 0.11 JARs in the HDFS
share/lib directory (the only risk with this solution is that any running job that’s
using the original Pig JARs could fail):

 $ hdfs dfs -rm -r share/lib/pig
 $ hdfs dfs -mkdir -p share/lib/pig
 $ hdfs dfs –put <local-path-to-pig-0.11>/jars/* share/lib/pig/

• The administrator can also create a separate directory for Pig 0.11 JARs and
change the default mapping to use the new Pig 0.11 directory (in this case, the
original Pig JARs in the sharelib are not removed):

 $ hdfs dfs –put local-path-to-pig-0.11 jars/* share/lib/pig-0.11/

The administrator should then modify the
property oozie.action.sharelib.for.pig in oozie-site.xml and restart the
Oozie server. For the Hive action, the admin can follow the same steps and mod‐
ify the oozie.action.sharelib.for.hive property instead.

In general, you can override the sharelib of any action at
three levels: action, job, and system. For defining at the action
level, set the property oozie.action.sharelib.for.#action
Type# in the configuration section of the action in work‐
flow.xml. For job level, you can define it in job.properties file as
a key-value pair. For a system-level change, the admin can
define the property in oozie-site.xml.

Managing Libraries in Oozie | 151

1 ShareLib in Apache Oozie.

Supporting multiple versions
In reality, Oozie users might need to use multiple versions of the same tool. For
example, some users might want to upgrade to Pig 0.12 while others are still using the
older Pig 0.11 version. The Oozie administrator can decide to support both versions.
The solution is very similar to the second option described in “Overriding/upgrading
existing JARs” on page 151. The administrator can upload the Pig-0.11 library to
share/lib/pig-0.11/ without modifying the oozie-site.xml.
Oozie admin is done after multiple versions of JARs are deployed into the share/lib
directory. Now it is the user’s responsibility to pick the right version by defining the
appropriate property for her action. For example, if a user needs Pig 0.12, which is the
default version installed in the share/lib/pig directory, she doesn’t need to do anything
extra. However, if the user wants to use a nondefault version, Pig 0.11 in this case, she
needs to specify the subdirectory through the Pig action’s configuration defined in
workflow.xml. The following example shows how to do this. It also demonstrates how
to include multiple subdirectories of JARs for the same action type. The Pig action
shown here includes both the Pig 0.11 JARs and the HCatalog JAR:

<property>
 <name>oozie.action.sharelib.for.pig</name>
 <value>pig-0.11,hcatalog</value>
</property>

Supporting the User’s JAR
Oozie users frequently need to use custom JARs for their applications. It includes cus‐
tom mapper or reducer classes, UDF JAR for Pig or Hive, arbitrary Java code, and
more. You might also occasionally want to override the action-specific system JARs
with your own version of the product. For example, the deployed Oozie system might
support only Pig 0.11 and 0.12, but the user needs Pig 0.10. In this case, you can over‐
ride the system JARs with your own version of the JARs.

There are many ways to provide your own JARs.1 Here are two of the most common
ways of including JARs in applications:

Through workflow lib/ directory
As explained in “Application Deployment Model” on page 20, users can copy all
the required JARs into the lib directory under the workflow application directory.
During execution, Oozie will upload those JARs using the Hadoop distributed
cache.

152 | Chapter 9: Advanced Topics

http://bit.ly/oozie-sharelib

Using oozie.libpath
Although the approach defined above is simple and usually sufficient, it is not
efficient in some instances. For example, let’s say a user has 100 workflows and all
of them need the same set of JARs. In the earlier approach, the user will need to
copy the same set of JARs into the lib/ directories of all 100 workflows. Moreover,
when a JAR changes, the user will have to update each one of those 100 directo‐
ries. Oozie provides a way to include the common set of JARs by defining
oozie.libpath in the job properties file. This libpath can be thought of as a
user-level shared library as opposed to the system-level shared library explained
in “Installing sharelib” on page 150. In general, a user or a project owner man‐
ages the user-level shared library whereas the administrator manages the system-
level shared library. In the case of the user-level shared library, Oozie will
distribute those JARs from that common location and include them in the appli‐
cation classpath. In addition, for any JAR modification, the user will only have to
update the JAR in the common location. The user doesn’t have to copy the JAR
for each workflow.

JAR Precedence in classpath
As already described, Oozie provides three ways to include the JARs for any workflow
action (Oozie ensures the following ordering of these JAR sources in the actual appli‐
cation classpath):

Application lib directory
Any JAR included in the workflow application lib/ directory receives the highest
priority in the classpath.

User-level shared library
The user-level shared library path defined through oozie.libpath has the next
highest priority in the ordering.

System-level shared library
The action JARs included in the system-defined sharelib has the lowest priority
among these three options.

Users don’t have to do anything special for adding Hadoop
JARs. Oozie includes the Hadoop JARs in the classpath by
default and gives it the highest priority. If you want to give
your JARs higher priority than the Hadoop JARs, you need
to specify oozie.launcher.mapreduce.task.classpath.user.
precedence=true in the action’s configuration.

Let’s look at an example to describe this ordering. Assume the user includes the Pig
0.12 JARs in the workflow-app/lib/ directory. She also passes in the oozie.libpath

Managing Libraries in Oozie | 153

that includes the Pig 0.11 JARs. Meanwhile, the administrator uploads the Pig 0.13
JARs into the system’s sharelib for the Pig action. In this scenario, Oozie will include
the Pig 0.12 JARs in the Pig action’s classpath, followed by Pig 0.11 and Pig 0.13 JARs.

However, in reality, this is not a recommended way of managing JARs. Users should
not use multiple ways of managing the same type of JAR (Pig, in this example). If the
user wants to include a custom version, she should include those JARs via the
workflow-app/lib directory. She should not pass oozie.libpath and should not set
oozie.use.system.libpath to true because these multiple approaches used in con‐
junction can lead to a lot of confusion.

Oozie Security
Security in the Hadoop ecosystem has become increasingly important, especially for
large enterprises. There are multiple layers of security in a distributed data platform
like Hadoop. It includes security of the data storage and processing. Since Oozie plays
an important role in scheduling and managing Hadoop jobs, guaranteeing the same
level of security in Oozie is equally critical. In this section, we describe the various
aspects of security in Oozie and see how to implement and manage it.

Oozie Security Overview
Oozie sits right in the middle of Hadoop and its users. Therefore, its security support
comes in two forms:

Oozie Service to Hadoop Services
Oozie ultimately submits the end user’s jobs to the JobTracker/ResourceManager
and accesses HDFS files. Oozie acts as a Hadoop client and Hadoop only sup‐
ports Kerberos-based authentication. Therefore, if the Hadoop cluster is secure,
Oozie has to present the appropriate Kerberos credentials to those services.

Oozie Client to Oozie Service
At the other end, when Oozie client communicates with the Oozie service, the
client needs to present a valid credential to the Oozie service. By Oozie client we
mean the Oozie CLI, REST client, Java client, or any other custom client that
accesses Oozie. In this context, users can use any custom security protocol, but
we only explain Kerberos based authentication here because that’s the most com‐
mon approach in the Hadoop ecosystem.

Figure 9-1 captures these two forms of security. Security on either side is independent
of each other. In other words, Oozie’s access to Hadoop could be secure while the
connection between the Oozie client and the Oozie server can be insecure. We
explain both of them in the rest of this section.

154 | Chapter 9: Advanced Topics

http://bit.ly/oozie-secure

Figure 9-1. Oozie security

Oozie to Hadoop
On a secure Hadoop cluster, every job submission needs to present a valid Kerberos
ticket to Hadoop services. The question then becomes, whose Kerberos credential
should Oozie present and how will it acquire those credentials? Oozie usually exe‐
cutes a job long after its original submission by the end user. In particular, Oozie
coordinator jobs can run for years, periodically scheduling Hadoop jobs during their
lifetime. However, Kerberos credentials are generally valid for a limited period of
time (e.g., one day). In short, end users can’t easily generate the Kerberos ticket for
long-running jobs. Due to this, it was decided that Oozie should manage the Ker‐
beros credential on behalf of the end users. Let’s now look at all the relevant Hadoop
configuration settings that Oozie leverages to implement this special privilege.

Configuring Hadoop services
Oozie utilizes Hadoop’s proxy user feature to act as a proxy for its end users and
presents Oozie’s own credentials to Hadoop services. To achieve this, we must config‐
ure Hadoop to allow the Oozie service be a valid proxy. More specifically, Hadoop’s
core-site.xml file should contain these two properties for the Oozie service user
(oozie):

<property>
 <name>hadoop.proxyuser.[OOZIE_SERVICE_OWNER].hosts</name>
 <value>[OOZIE_SERVICE_HOSTNAME]</value>
</property>

<property>
 <name>hadoop.proxyuser.[OOZIE_SERVICE_OWNER].groups</name>
 <value>[OOZIE_SERVICE_OWNER_GROUP] </value>
</property>

The example values for [OOZIE_SERVICE_OWNER], [OOZIE_SERVICE_OWNER_GROUP], and
[OOZIE_SERVICE_HOSTNAME] are oozie, users, and localhost, respectively.

Oozie Security | 155

Setting up Keytab and Principal
As already described, Oozie acts as a proxy for the end users. The next question is,
how can Oozie authenticate itself to Hadoop services as a valid proxy? Oozie presents
its own Kerberos credentials for authentication. In general, there are two conven‐
tional ways to get a Kerberos ticket:

• Execute kinit from the command line and provide a password.
• Use a keytab file as an encrypted password and programmatically get the

credentials.

Oozie uses the second option (keytab based), which is the widely adopted approach
for service authentication. For this, we need two things: a keytab file and an associ‐
ated principal name. Your Hadoop administrator should be very familiar with the
standard ways of getting those, but we will explain the basic steps to get a Kerberos
principal and the associated keytab file here anyway:

Kerberos Principal
The principal name for the Oozie service usually follows the following syntax:
oozie/<fully.qualified.domain.name>@<REALM>. Here, oozie is the ID of the
service user that owns the Oozie web service. <fully.qualified.domain.name>
determines the hostname where the Oozie web service is running (Oozie server).
<REALM> specifies the Kerberos domain. One such example of a principal is oozie/
my-host-name.example.com@EXAMPLE.COM. The output from the following
interactive command shows us how to create a principal:

$ kadmin
 Authenticating as principal $USER/admin@EXAMPLE.COM with password.
 Password for $USER/admin@EXAMPLE.COM:
 kadmin: add_principal -randkey oozie/fully.qualified.domain.name
 WARNING: no policy specified for oozie/fully.qualified.domain.name
 @EXAMPLE.COM; defaulting to no policy
 Principal "oozie/fully.qualified.domain.name@EXAMPLE.COM" created.

Keytab file
After creating the principal, we need to generate a related keytab file. The follow‐
ing command-line interactions demonstrate how to create a keytab for the same
principal:

kadmin: ktadd -k /my/keytab/path/oozie.service.keytab oozie/
 fully.qualified.domain.name
 Entry for principal oozie/fully.qualified.domain.name with kvno 2,
 encryption type aes256-cts-hmac-sha1-96 added to keytab
 WRFILE:/my/keytab/path/oozie.service.keytab.

 Entry for principal oozie/fully.qualified.domain.name with kvno 2,
 encryption type aes128-cts-hmac-sha1-96 added to keytab

156 | Chapter 9: Advanced Topics

 WRFILE:/my/keytab/path/oozie.service.keytab.

 Entry for principal oozie/fully.qualified.domain.name with kvno 2,
 encryption type arcfour-hmac added to keytab
 WRFILE:/my/keytab/path/oozie.service.keytab.
kadmin: exit

Testing
There are ways to test if both the principal and the key tab were created correctly.
The following commands and the responses demonstrate that both were created
successfully:

$ klist -kt /my/keytab/path/oozie.service.keytab
 Keytab name: WRFILE:/my/keytab/path/oozie.service.keytab
 KVNO Timestamp Principal
 ---- ----------------- --
 2 09/17/14 00:00:59 oozie/fully.qualified.domain.name@EXAMPLE.COM
 2 09/17/14 00:00:59 oozie/fully.qualified.domain.name@EXAMPLE.COM
 2 09/17/14 00:00:59 oozie/fully.qualified.domain.name@EXAMPLE.COM
$ kinit -kt /my/keytab/path/oozie.service.keytab oozie/
 fully.qualified.domain.name
$ klist
 Ticket cache: FILE:/tmp/krb5cc_5003_VtXj6E
 Default principal: oozie/fully.qualified.domain.name@EXAMPLE.COM

 Valid starting Expires Service principal
 09/17/14 00:03:04 09/18/14 00:03:04 krbtgt/EXAMPLE.COM@EXAMPLE.COM
 renew until 09/24/14 00:03:04

Configuring the Oozie server
After successfully creating the keytab file and the principal, we are now ready to con‐
figure Oozie to support Kerberos security for all Hadoop services. We need to add the
following properties to the oozie-site.xml file:

<property>
 <name>oozie.service.HadoopAccessorService.kerberos.enabled</name>
 <value>true</value>
 <description>
 Indicates if Oozie is configured to use Kerberos. (Oozie to Hadoop)
 </description>
</property>

<property>
 <name>local.realm</name>
 <value>EXAMPLE.COM</value>
 <description>
 Kerberos Realm used by Oozie and Hadoop. Using 'local.realm'
 to be aligned with Hadoop configuration
 </description>
</property>

Oozie Security | 157

<property>
 <name>oozie.service.HadoopAccessorService.keytab.file</name>
 <value>/my/keytab/path/oozie.service.keytab</value>
 <description>
 Location of the Oozie user keytab file.
 </description>
</property>

<property>
 <name>oozie.service.HadoopAccessorService.kerberos.principal</name>
 <value>oozie/fully.qualified.domain.name@EXAMPLE.COM</value>
 <description>
 Kerberos principal for Oozie service.
 </description>
</property>

After modifying the configuration, you need to restart the Oozie server using the
commands oozied.sh stop and oozied.sh start . Make sure the service is up and
running. In addition, you can open the file logs/oozie.log and look for the following
type of log messages to confirm that Oozie to Hadoop security is configured cor‐
rectly:

2014-09-11 20:17:21,907 INFO HadoopAccessorService:539 - USER[-] GROUP[-]
 Oozie Kerberos Authentication [enabled]
2014-09-11 20:17:22,338 INFO HadoopAccessorService:539 - USER[-] GROUP[-]
 Got Kerberos ticket, keytab /my/keytab/path/oozie.service.keytab], Oozie
 principal
 principal [oozie/fully.qualified.domain.name@EXAMPLE.COM]

When the Oozie server is up, you can submit any Oozie workflow with a Hadoop
action to make sure that Oozie can submit jobs to a Kerberized Hadoop cluster.

Oozie Client to Server
As we have seen in the previous section, the Oozie server can act as a proxy for any
user. This means that Hadoop services do not check the user’s credentials if the job is
submitted by the Oozie server. Although Hadoop services execute the job/request as
the end user, they authenticate the Oozie service user’s credential instead of the end
user. Therefore it is very critical that the Oozie server authenticates any user’s request
before submitting the request to Hadoop.

You can configure the Oozie server to authenticate any Oozie client’s request. This
way, Oozie checks the client credentials only during job submission. After the
submission, Oozie doesn’t check the user’s credential for any recurrent or delayed
scheduling of Hadoop jobs. Both the Oozie server and the client need to take some
steps to support this authentication. By default, Oozie supports Kerberos-based
authentication between the client and the server. However, it is not unusual that some
enterprises may prefer their custom authentication over Kerberos. Oozie supports

158 | Chapter 9: Advanced Topics

this requirement through its pluggable authentication framework. Pluggable authen‐
tication is covered in Oozie’s online documentation in detail. In this section, we cover
Kerberos based HTTP authentication for the Oozie web server.

Oozie Server Security
The steps required to secure the Oozie server are very similar to what we followed in
“Oozie to Hadoop” on page 155. We have to create a principal for Oozie’s HTTP
authentication and the corresponding keytab file.

Principal and keytab for HTTP: In the following example, we choose HTTP/
fully.qualified.domain.name as the principal where HTTP is required. In addition,
we append the corresponding encrypted password into the same keytab file, /my/
keytab/path/oozie.service.keytab, that we used in our previous example. Finally, we
show the command to test the newly generated keytab and the principal:

$ kadmin
 Authenticating as principal $USER/admin@EXAMPLE.COM with password.
 Password for $user/admin@EXAMPLE.COM:
 kadmin: add_principal –randkey HTTP/fully.qualified.domain.name
 WARNING: no policy specified for HTTP/fully.qualified.domain.name@EXAMPLE.COM;
 defaulting to no policy
 Principal "HTTP/fully.qualified.domain.name@EXAMPLE.COM" created.
 kadmin: ktadd -k /my/keytab/path/oozie.service.keytab HTTP/
 fully.qualified.domain.name
 Entry for principal HTTP/fully.qualified.domain.name with kvno 2,
 encryption type aes256-cts-hmac-sha1-96 added to keytab
 WRFILE:/my/keytab/path/
 oozie.service.keytab.
 Entry for principal HTTP/fully.qualified.domain.name with kvno 2,
 encryption type aes128-cts-hmac-sha1-96 added to keytab
 WRFILE:/my/keytab/path/oozie.service.keytab.
 Entry for principal HTTP/fully.qualified.domain.name with kvno 2,
 encryption type arcfour-hmac added to keytab
 WRFILE:/my/keytab/path/oozie.service.keytab.
 kadmin: exit

$ klist -kt /my/keytab/path/oozie.service.keytab
 Keytab name: WRFILE:/my/keytab/path/oozie.service.keytab
 KVNO Timestamp Principal
 ---- ----------------- --
 2 09/17/14 00:00:59 oozie/fully.qualified.domain.name@EXAMPLE.COM
 2 09/17/14 00:00:59 oozie/fully.qualified.domain.name@EXAMPLE.COM
 2 09/17/14 00:00:59 oozie/fully.qualified.domain.name@EXAMPLE.COM
 2 09/17/14 00:06:27 HTTP/fully.qualified.domain.name@EXAMPLE.COM
 2 09/17/14 00:06:27 HTTP/fully.qualified.domain.name@EXAMPLE.COM
 2 09/17/14 00:06:27 HTTP/fully.qualified.domain.name@EXAMPLE.COM

Oozie Security | 159

http://bit.ly/oozie-plug-auth

Configuring the Oozie Server
After creating the keytab and the principal, we need to configure the Oozie server to
turn on the Kerberos authentication for HTTP communication. After updating the
oozie-site.xml, we need to restart the Oozie server to make sure the new properties
take effect.

Some of the properties needed to support Kerberos authentication
between Oozie server and Hadoop look similar to the ones needed
for Oozie client-to-server authentication, which can be confusing.
One easy way to distinguish these two is as follows: the property
names related to Oozie server to Hadoop begin with
oozie.service.HadoopAccessorService and the property names
related to Oozie client to the server start with
oozie.authentication.

Here’s the code we’ll need to use:
<property>
 <name>oozie.authentication.type</name>
 <value>kerberos</value>
 <description>
 Defines authentication used for Oozie HTTP endpoint.
 Supported values are: simple | kerberos |
 #AUTHENTICATION_HANDLER_CLASSNAME#
 </description>
</property>
<property>
 <name>oozie.authentication.kerberos.principal</name>
 <value> HTTP/fully.qualified.domain.name@EXAMPLE.COM </value>
 <description>
 Indicates the Kerberos principal to be used for HTTP endpoint.
 The principal MUST start with 'HTTP/' as per Kerberos HTTP SPNEGO
 specification.
 </description>
</property>
<property>
 <name>oozie.authentication.kerberos.keytab</name>
 <value/my/keytab/path/oozie.service.keytab </value>
 <description>
 Location of the keytab file with the credentials for the principal.
 Referring to the same keytab file Oozie uses for its Kerberos credentials
 for Hadoop.
 </description>
</property>

160 | Chapter 9: Advanced Topics

You might need to copy the property value of
hadoop.security.auth_to_local from Hadoop’s core-site.xml
into a new property in oozie-site.xml called
oozie.authentication.kerberos.name.rules. In addition, you
might also need to add a new rule like RULE:[2:$1/$2@$0]
(oozie/.*@EXAMPLE.COM)s/.*/oozie/ as part of its value.

Oozie client
The Oozie client needs to present a Kerberos credential for all its communications to
a secure Oozie service. For the Oozie CLI, users typically use kinit to get the Ker‐
beros ticket.

If you receive the following error message when you run an Oozie
command, it means there is no Kerberos ticket in your environ‐
ment:

Error: AUTHENTICATION :
 Could not authenticate, GSSException:
 No valid credentials provided (Mechanism level:
 Failed to find any Kerberos tgt)

You can verify it using klist and the following response will con‐
firm the suspected root cause:

$ klist
klist: No credentials cache found (ticket cache FILE:
 /tmp/krb5cc_6053)å

The resolution is to execute the kinit command.

By default, Oozie CLI creates a ~/.oozie-auth-token token file when you first execute
the command with a Kerberos ticket. The subsequent Oozie commands use this
token file instead of passing the Kerberos ticket. The user can turn it off by passing
the -Doozie.auth.token.cache=false argument to the Oozie CLI command.

Oozie Web UI needs HTTP authentication and supports HTTP
SPNEGO protocol for web authentication. Some browsers such as
Firefox and Internet Explorer already support this type of authenti‐
cation. Users need to configure their browsers by following the
browser-specific instructions (more details can be found in the
Hadoop documentation).

Proxy user in Oozie
Much like Hadoop, Oozie server also supports the proxy user facility for its users. In
general, any service (e.g., Falcon) that acts as an Oozie client on behalf of its end user
needs to be a proxy user to the Oozie service. For each proxy user, the Oozie adminis‐

Oozie Security | 161

http://bit.ly/oozie-http-auth

trator needs to add the following properties in oozie-site.xml and then restart the
server (more details can be found in the Oozie documentation):

<property>
 <name>oozie.service.ProxyUserService.proxyuser.[OOZIE_USER].hosts</name>
 <value>*</value>
 <description>
 List of hosts the [OOZIE_USER] user is allowed to perform 'doAs'
 operations. The [OOZIE_USER] must be replaced with the username
 of the user who is allowed to perform 'doAs' operations.
 The value can be the '*' wildcard or a list of hostnames.
 </description>
</property>
<property>
 <name>oozie.service.ProxyUserService.proxyuser.[OOZIE_USER].groups</name>
 <value>*</value>
 <description>
 List of groups the [OOZIE_USER] user is allowed to impersonate users
 from to perform 'doAs' operations.
 The [OOZIE_USER] must be replaced with the username o the user who is
 allowed to perform 'doAs' operations. The value can be the '*'
 wildcard or a list of groups.
 </description>
</property>

Supporting Custom Credentials
Oozie schedules and executes workflows submitted by users. The workflow ultimately
launches the job that communicates with various services in the Hadoop eco-system
like the Hive meta-store, HBase service, and so on. For security purposes, each ser‐
vice might need a different type of credential (e.g., a Hadoop token, Hive meta-store
token, etc.). These credentials are granted by the corresponding services. Each job
needs to present the service-specific credentials (i.e., token) when contacting that ser‐
vice. But who should get the credentials and when? The obvious options are the end
user during job submission or the Oozie server during job launch. As mentioned ear‐
lier, jobs often run long after the initial submission. During the submission, the end
user can get the service token. But the service tokens will expire after some duration.
That means the initial token can’t be used for the job that runs past token expiration.
So the better option is for Oozie to get the service token using Oozie’s own credentials
just before the launch of the workflow action.

Now that we understand why the job requires the service token and why Oozie must
get it on behalf of end users, let’s explain how Oozie knows the process/steps required
to get any service credential, and which service credential it should get for a given
workflow action. By default, Oozie gets and injects the Hadoop services credentials
(RM token, HDFS token, etc.) into job conf and Oozie knows how to get them. For
other service credentials, Oozie needs to know how to get the credential. The process
to get the credential/token is different for each credential type. In other words, the

162 | Chapter 9: Advanced Topics

http://bit.ly/oozie-proxy-config

steps required for a Hive meta-store token are different from the steps required for an
HBase token.

Oozie provides a unified credential framework to get any custom credential. Oozie
admins and users have some responsibilities to support any new credential injection.
At first, the admin should specify the mapping in oozie-site.xml between the new cre‐
dential type and the corresponding classes to get the credential. The following exam‐
ple shows how to configure a new credential type called hive_metastore, which
utilizes the HCatCredentials class to gather the token. Admins can define multiple
such pairs for other types of new credentials as well. The Apache Oozie documenta‐
tion demonstrates how to write a new credential gathering class:

<property>
 <name>oozie.credentials.credentialclasses</name>
 <value>hive_metastore=org.apache.oozie.action.hadoop.HCatCredentials</value>
</property>

By default, Oozie includes two such credential classes, one for the Hive meta-store
token and the other for the HBase service token. But they are not configured in the
oozie-site.xml file by default. In addition, the admin will need to inject the required
JARs into the Oozie WAR file to run these credential classes. For HCatCredentials,
some of the Hive JARs must be included in the Oozie web application path.

Any credential class might need third-party JARs to gather the
token from the service. For instance, the HCatCredential class
needs Hive JARs to get the meta-store token. Without this, you
might get the following exception: java.lang.NoClassDef
FoundError: org/apache/hadoop/hive/conf/HiveConf. In this
case, you will need to include hive-*.jar and lib*.jar from any
standard Hive installation lib/ directory into the oozie.war file. You
can test it by copying the JARs into the WEB-INF/lib/ directory of
the Oozie web app and restarting the service.

After defining the system configuration, the next question is, how can a user ask
Oozie to automatically get and inject this token into an action’s configuration?
Example 9-1 demonstrates such an action.

Example 9-1. Credentials section

<workflow-app xmlns="uri:oozie:workflow:0.2.5" name="hive-with-secirty-wf">
 <credentials>
 <credential name='metastore_token' type='hive_metastore'>
 <property>
 <name>hcat.metastore.uri</name>
 <value>thrift://my_metastore_server:port</value>
 </property>

Oozie Security | 163

http://bit.ly/oozie-unified-cred
http://bit.ly/oozie-unified-mod
http://bit.ly/oozie-unified-mod

 <property>
 <name>hcat.metastore.principal</name>
 <value>hive/fully.qualified.domain.name@EXAMPLE.COM</value>
 </property>
 </credential>
 </credentials>
 <start to="hive-query"/>
 <action name="hive-query" cred="metastore_token">
 <hive xmlns="uri:oozie:hive-action:0.2">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <job-xml>${hiveSite}</job-xml>
 <script>test_query.hql</script>
 </hive>
 <ok to="end"/>
 <error to="fail"/>
 </action>
</worklfow-app>

This feature is only supported starting with workflow XSD version
0.2.5. In other words, for the namespace, we should use
uri:oozie:workflow:0.2.5 or higher.

In this example, the user declares a new credential (metastore_token) with the
necessary configuration to get the token for the credential type hive_metastore. This
type (hive_metastore) needs to pass the two configuration settings
(hcat.metastore.uri and hcat.metastore.principal) to the class
(HCatCredentials) to get the token. Then the user specifies the name of the creden‐
tial through the cred attribute (i.e., cred=metastore_token") in the action definition.
The cred attribute can accept a list of comma-separated credentials (i.e.,
cred=metastore_token,hbase_cred"). We summarize the execution steps here:

1. When Oozie sees any action with the cred attribute, it looks for and finds the
corresponding credential definition with the same name. In this example, Oozie
gets the credential definition from the credentials section using the name meta
store_token.

2. Using the type attribute in the credential definition, Oozie finds out the corre‐
sponding credential class from oozie-site.xml.

3. Oozie then passes the configurations provided in the credential section of the
workflow and executes the credential class. Note that these configurations are
credential-type-specific and can be found in their respective documentations.
After this execution, Oozie collects the meta-store service token.

164 | Chapter 9: Advanced Topics

4. At last, Oozie injects this token into the job configuration before submitting the
Hive job.

Supporting New API in MapReduce Action
Hadoop supports two similar APIs to write and manage Hadoop MapReduce jobs.
The first one is known as the old API or the mapred API and is packaged under the
org.apache.hadoop.mapred package. The second one is known as the new API or
the mapreduce API, which is included as part of the org.apache.hadoop.mapreduce
package. MapReduce applications can be written using either API. As we saw earlier,
the <map-reduce> action that comes with Oozie primarily supports mapper and
reducer classes written using the old API out of the box. In this section, we describe a
simple approach to run mapper and reducer classes that are written based on the new
API using the basic <map-reduce> action type.

There is more than one way to use the new MapReduce API
because Oozie allows customization at different levels. In the next
chapter, we present another way to natively support jobs written
using the new API in “Overriding an Asynchronous Action Type”
on page 188. Alternatively, developers can also write a new, first-
class, MapReduce action type to support the new API following the
steps provided in “Creating a New Asynchronous Action” on page
193.

There are a few changes required to support an application using the new Hadoop
API through the basic <map-reduce> action. We will adapt the MapReduce example
written based on the old Hadoop API that comes with the Oozie distribution. We will
need to make the following modifications:

• Replace the old API based wordcount MapReduce job with the new API based
wordcount example that comes packaged with the Hadoop distribution. In other
words, we need to add the Hadoop example JARs to the lib/ directory of the
workflow.

• Add two new configuration properties named mapred.mapper.new-
api and mapred.reducer.new-api with both values set to true.

• Replace two configuration property names as follows: mapred.map.class to
mapreduce.map.class and mapred.reduce.class to mapreduce.reduce.class.

• Add two new configuration properties: mapred.output.key.class and
mapred.output.value.class with appropriate class names.

The modified workflow.xml is shown here:

Supporting New API in MapReduce Action | 165

<workflow-app xmlns="uri:oozie:workflow:0.5" name="map-reduce-wf">
 <start to="mr-node"/>
 <action name="mr-node">
 <map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <prepare>
 <delete path=
 "${nameNode}/user/${wf:user()}/${examplesRoot}/output-data/${outputDir}"/>
 </prepare>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>${queueName}</value>
 </property>
 <property>
 <name>mapred.mapper.new-api</name>
 <value>true</value>
 </property>
 <property>
 <name>mapred.reducer.new-api</name>
 <value>true</value>
 </property>
 <property>
 <name>mapreduce.map.class</name>
 <value>org.apache.hadoop.examples.WordCount$TokenizerMapper</value>
 </property>
 <property>
 <name>mapreduce.reduce.class</name>
 <value>org.apache.hadoop.examples.WordCount$IntSumReducer</value>
 </property>
 <property>
 <name>mapred.output.key.class</name>
 <value>org.apache.hadoop.io.Text</value>
 </property>
 <property>
 <name>mapred.output.value.class</name>
 <value>org.apache.hadoop.io.IntWritable</value>
 </property>
 <property>
 <name>mapred.map.tasks</name>
 <value>1</value>
 </property>
 <property>
 <name>mapred.input.dir</name>
 <value>/user/${wf:user()}/${examplesRoot}/input-data/text</value>
 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>/user/${wf:user()}/${examplesRoot}/output-data/${outputDir}
 </value>
 </property>

166 | Chapter 9: Advanced Topics

 </configuration>
 </map-reduce>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>
 Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]
 </message>
 </kill>
 <end name="end"/>
</workflow-app>

Supporting Uber JAR
The term uber JAR in this context refers to the Hadoop concept of the same name. In
general, users package their application-specific custom classes into a JAR. Addition‐
ally, users might need a set of third-party JARs for their application. Hadoop provides
a way to include an uber JAR that is comprised of the custom classes as well as the
third-party JARs under the lib/ subdirectory in the JAR. This is purely a convenience
feature. This allows the user to include the uber JAR during Hadoop job submission.
Hadoop understands this predefined directory structure and includes all the JARs
from the lib/ subdirectory of the uber JAR on to the application classpath.

When users are writing MapReduce code natively in Hadoop, this uber JAR has to be
injected using the conf.setJar() call. The setJar() method in the Hadoop code is a
way for the user to set a JAR for the MapReduce job. Oozie also allows this type of
MapReduce jobs. To support this, the Oozie administrator has to turn on the feature
through the oozie-site.xml as shown here (by default, this feature is turned off):

<configuration>
 <property>
 <name>oozie.action.mapreduce.uber.jar.enable</name>
 <value>true</value>
 </property>
</configuration>

For the workflow job, the user needs to copy the uber JAR into an HDFS location and
then define the full HDFS path of the uber JAR through action configuration as
shown here (when Oozie launches this MapReduce job, it injects the uber JAR on
behalf of the user by calling the conf.setJar() method):

<map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <configuration>
 <property>
 <name>oozie.mapreduce.uber.jar</name>
 <value>${MY_HDFS_PATH_TO_UBER_JAR}/my-uber-jar.jar</value>

Supporting Uber JAR | 167

 </property>
 </configuration>
</map-reduce>

This feature is only supported in Oozie through the pure map-
reduce action. It doesn’t work for pipe or streaming jobs. More‐
over, this feature has a dependency on Hadoop version. The
supported Hadoop versions are 1.2.0 or later and 2.2.0 or later.

Cron Scheduling
Oozie coordinator traditionally supports workflow executions at fixed time intervals.
In other words, a user can schedule her workflow to run at a regular interval or fre‐
quency that can be expressed in minutes, hours, days, or years. This simple and
essential feature covers a large number of prevalent use cases. We comprehensively
covered this topic in Chapter 6.

While this fixed frequency-based scheduling is very popular, a substantial number of
use cases don’t follow this regular time pattern. For example, a user might want to
schedule her job every hour only on Mondays and Wednesdays from 11 a.m. to 2
p.m. It can get very complicated and unmanageable to schedule and manage her
workflow using Oozie’s classic, frequency-based coordinator. Oozie addresses this
requirement by borrowing from the cron concept, which is widely used in all Linux/
Unix systems. In this section, we describe the cron syntax recently adopted by Oozie
and how users can flexibly schedule their workflows using this feature.

A Simple Cron-Based Coordinator
Before explaining the details of cron in Oozie, we introduce the concept using a sim‐
ple example. This example demonstrates how this new feature can be defined and
used in the coordinator. We explain Oozie’s actual cron specification in the following
section.

This example is based on an earlier example in “An Improved Coordinator” on page
113. The original example schedules a workflow every hour of every day from the
start time to end time. In this example, we modify the hourly rhythm to every hour
from 11 a.m. to 2 p.m. only on Mondays and Wednesdays. Using the cron syntax, we
can easily express this restriction by changing the value of the frequency attribute in
the coordinator definition as shown here (the rest of the coordinator specification
remains unchanged):

<coordinator-app name="my_second" start="${startTime}" end="${endTime}"
 frequency=”0 11-14 * * MON,WED" timezone="UTC"
 xmlns=“uri:oozie:coordinator:0.4">

168 | Chapter 9: Advanced Topics

http://bit.ly/oozie-cron-def

Let’s try and broadly understand the example first. The frequency string is obviously
different from the traditional coordinator syntax. The first “0” means the workflow
will start at 0 minute of the hour and “11-14” limits the execution to the hours
between 11 a.m. to 2 p.m. of a day. “MON,WED” means run on Mondays and Wed‐
nesdays only.

For instance, if we provide the startTime as 2014-07-04T02:00Z during job submis‐
sion, the first workflow will not start until July 7 because July 4, 5, and 6 are neither a
Monday nor a Wednesday. More specifically, the nominal time of the first coordinator
action would be 2014-07-07T11:00Z. The nominal times of the next four workflow
executions (actions 2 through 5) would be 2014-07-07T12:00Z, 2014-07-07T13:00Z,
2014-07-07T14:00Z, and 2014-07-09T11:00Z in order. In particular, there are two
interesting variations to note from this list of nominal times:

• Although the user-defined start time is 2 a.m. on July 4, the first action doesn’t
materialize until 11 a.m. on July 7. In short, the coordinator will wait for nearly
three days after its start time. In a classic frequency-based coordinator, the mate‐
rialization begins as soon as the start time is hit.

• The fourth action was created for 2 p.m. on July 7. But the fifth one has to wait
for nearly two days until July 9 to execute. This type of irregular execution is not
possible using the traditional coordinator frequency specification.

Oozie Cron Specification
As discussed earlier, cron is a very powerful and flexible tool commonly used in
Unix-like systems. Although the concept is widely understood, there are different
variations of the basic cron syntax out there. Oozie’s cron implementation is based on
the Quartz Scheduler. In addition, Oozie has slightly tweaked the Quartz’s cron
specification to support its use cases. This section describes the details of Oozie’s cron
syntax using relevant examples. Even if you are an experienced cron user on Unix
systems, we still recommend you take some time to review Oozie’s cron syntax before
using it.

Oozie’s cron-based frequency definition is a string of five fields separated by white
space. These five fields denote various time components such as Minute, Hour, Day-
of-Month, Month, and Day-of-Week, in that order. Obviously, the missing unit is
seconds because Oozie doesn’t support second-level scheduling. In addition to allow‐
ing intuitive numerical or character values in each field, cron also supports special
characters for additional flexibility. Table 9-1 and the subsequent examples, adapted
from the Apache Oozie documentation, help clarify the concept.

Cron Scheduling | 169

http://www.quartz-scheduler.org/
http://bit.ly/oozie-cron-syntax

Table 9-1. Oozie’s cron syntax
Field name Allowed values Allowed special chars

Minute 0-59 Commas (,), dashes (-), asterisks, and slashes (/)

Hour 0-23 Commas (,), dashes (-), asterisks, and slashes (/)

Day of Month 1-31 Commas (,), dashes (-), asterisks, question marks (?), slashes (/), and the letters “L”
and “W”

Month 1-12 or JAN-DEC Commas (,), dashes (-), asterisks, and slashes (/)

Day of Week 1-7 or SUN-SAT Commas (,), dashes (-), asterisks, question marks (?), slashes (/), hash tags (#), and the
letter “L”

Allowed values
The Allowed Values in the table above for each field are self-explanatory and similar
to other cron specifications, with one exception. While most cron syntaxes support
the range 0-6 for the Day of Week field, Oozie supports the values 1-7 instead. Also,
each field can have one or more values where multiple values are expressed using spe‐
cial characters described in the next two sections.

Special characters
As shown in Table 9-1, commas (,), dashes (-), asterisks, and slashes (/) are accepted
in every field and relatively easy to understand. On the other hand, question marks
(?), hash tags (#), and the letters “L” and “W” are used in fewer fields and require
careful attention. Let’s take a closer look at the standard characters (we cover the non‐
standard characters ?LW# in the next section):

Asterisk (*)
An asterisk denotes any valid value for the field. For instance, an asterisk (*) in
the hour field means Oozie must execute the workflow every hour of a day. The
user can define a complete frequency string as “* * * * *”. This means the work‐
flow will start every minute of every hour of every day between the start and end
time.

Comma (,)
A comma allows users to indicate a list of values in any field. For instance,
“2,7,14” in the hour field means the 2, 7, and 14 hour of a day. The frequency
string 15 2,7,14 * * * tells Oozie to start a workflow at 2:15, 7:15, and 14:15 of
each day.

Dash (-)
A dash describes a range of values in any field. In general, users specify it with a
start and an end of a range (both inclusive). For example, “MON-FRI” in the
Day-of-Week field restricts the valid days to Monday through Friday (both inclu‐
sive). Extending the previous example, 15 2,7,14 * FEB-APR * means start a

170 | Chapter 9: Advanced Topics

workflow at 2:15, 7:15, and 14:15 of each day of the months February, March, and
April.

Slash (/)
A slash in any field indicates an increment value for that field. As the continua‐
tion of the previous example, 15/30 2,7,14 * FEB-APR *, tells Oozie to start the
workflow at 2:15, 2:45, 7:15, 7:45, 14:15, and 14:45 of each day of the months Feb‐
ruary, March, and April. A value of 15/30 in the minute field translates to minute
15 and minute 45 of the hour, as 30 is the increment (15 + 30 = 45). In another
example, 15/30 2/10 * FEB-APR *, means start the workflow at 2:15, 2:45,
12:15, 12:45, 22:15, and 22:45 of each day of the months February, March, and
April.

Nonstandard special characters

Question mark (“?”)
The question mark can only be used in the Day-of-Week or Day-of-Month field.
If you want to specify one but not the other among these two fields, you can
specify “?” in the field that’s not needed. For example, if you want to run a work‐
flow on the 25th of the month (defined using Day-of-Month) but you don’t care
about the Day-of-Week, you can specify it as follows: 15 2,7,14 25 FEB-APR ?.
This says start the workflow at 2:15, 7:15, and 14:15 of the 25th day of the months
February, March, and April. Alternatively, 15 2,7,14 ? FEB-APR FRI tells Oozie
to start the workflow at 2:15, 7:15, and 14:15 of each Friday of the months Febru‐
ary, March, and April.

Letter “L”
The letter “L” can also be specified only in the Day-of-Week or Day-of-Month
field. It signifies the last day of a week or the last day of a month. For instance,
15 2,7 ? FEB-APR L means start a workflow at 2:15, and 7:15 of the last day of
the week (i.e., Saturday) of the months February, March, and April. In a similar
example, 0/15 2 L FEB-APR ? means start a workflow at 2:00 and 2:15 of the last
day of the months February, March, and April.

Letter “W”
The letter “W” is only allowed in the Day-of-Month field. It refers to the nearest
weekday closest to a given day. A number usually precedes “W”. For instance,
“10W” in the Day-of-Month field denotes the closest workday to the 10th day of a
month. If 10th day is a Tuesday, the workflow will start that Tuesday. However, if
the 10th is a Sunday, the workflow will start on Monday, the 11th. If the 10th day of
the month is Saturday, the workflow will start on the previous Friday, the 9th.

Cron Scheduling | 171

Hash (#)
This is only allowed in the Day-of-Week filed. In general, it is preceded and fol‐
lowed by a number. For example, 5#4 in Day-of-Week field denotes the 4th Thurs‐
day (5th day of the week) of each month.

Apart from this list, there are lots of examples in the Quartz Scheduler documenta‐
tion that Oozie’s cron implementation is loosely based on. We also suggest taking a
look at the examples provided in Oozie’s documentation.

Emulate Asynchronous Data Processing
Oozie currently supports synchronous data processing. The coordinator basically
executes the workflow at regular interval when all of the dependent data is available.
This covers a lot of the common use cases. However, there are some use cases that
depend on data rather than time. In other words, these use cases require the work‐
flow to be run as soon as some data is available irrespective of the time. Additionally,
the dependent data may also be produced at random time intervals without following
any regular frequency. Basically, the data could arrive at any time. It may be available
in the next five minutes or it may take five more days. Supporting these asynchronous
use cases has been in Oozie’s wish list for a long time. It’s worth noting that the recent
addition of support for table-based data dependency described in “HCatalog-Based
Data Dependency” on page 174 will make it easier to support such asynchronous
processing in future versions of Oozie. Since support for asynchronous processing is
not implemented yet at the time of writing this book, we present a rather quick-and-
dirty workaround to emulate some aspects of an asynchronous coordinator using the
synchronous coordinator.

This is one way of accomplishing this requirement through Oozie,
but may not be the most efficient approach. Readers should con‐
sider all options, including custom code to implement this logic, as
this particular approach can be overkill for some use cases.

The basic idea is to frequently spawn coordinator actions, which will check for data.
If the data is available, the workflow will be run. Otherwise, the action will end up in
the TIMEDOUT state. In essence, we use a mix of time and data dependency to emulate
pure data dependency. However, there are some preconditions required for imple‐
menting this approach:

• You need to know the shortest or the most frequent interval when the dependent
data can potentially be available. For example, if the range for data being pro‐
duced is every five minutes to once every five days, the minimum possible fre‐
quency is five minutes. We will use this as the value for the rest of our example.

172 | Chapter 9: Advanced Topics

http://bit.ly/oozie-crontrigger
http://bit.ly/oozie-crontrigger
http://bit.ly/oozie-cron-syntax

• The dependent dataset should be stored in a directory with the timestamp as part
of the HDFS path. And the timestamps of the batch directories should align with
the minimum frequency. Even if the actual data creation time doesn’t fit the fre‐
quency, it should be stored in the directory corresponding to the nearest fre‐
quency batch. For example, if minimum frequency is five minutes, the data
should be stored under a directory like /tmp/data/$YEAR-$MONTH-$DAY-
$HOUR-05/, /tmp/data/$YEAR-$MONTH-$DAY-$HOUR-10/, or /tmp/data/
$YEAR-$MONTH-$DAY-$HOUR-55/.

It’s important to understand some of the consequences of this approach. If the data is
only rarely produced, but the selected minimum frequency is very small, there may
be a lot of coordinator actions that aren’t doing any work in the system. The action
will be created and check for data availability for a timeout period of time, and then
will end up in TIMEDOUT state. For example, if you select a frequency of five minutes
and the dependent data doesn’t arrive for an entire day, Oozie might end up creating
288 short-lived coordinator actions that don’t perform any effective work.

Another important factor is to determine the value of the timeout parameter for the
coordinator. A very high timeout value will keep multiple coordinator actions simul‐
taneously active in the system and that can increase the load and the stress on the
Oozie server. For example, if the minimum frequency is five minutes and the timeout
is one hour, there could be 12 active actions in the system at any time. On the other
hand, a very small timeout value can cause the action to timeout before the data
arrives if the data is even slightly delayed. For example, if the data for 12:05 p.m.
comes late to HDFS (say at 12:15 p.m.) and you are running the coordinator with a
timeout value of five minutes, the coordinator action corresponding to 12:05 p.m.
will timeout at 12:10 p.m. This will result in the data from 12:05 p.m. not getting pro‐
cessed at all. In general, a good timeout value is usually two or three times the value
of the minimum frequency.

Example 9-2 demonstrates how to implement this approach.

Example 9-2. Asynchronous coordinator

$ cat coordinator.xml
 <coordinator-app name="SIMULATED_ASYNC_COORD" frequency="${frequency}"
 start="${start}" end="${end}" xmlns="uri:oozie:coordinator:0.4">
 <controls>
 <timeout>10</timeout>
 </controls>
 <datasets>
 <dataset name="simulated_dataset" frequency="${min_frequency}"
 initial-instance="${start}" timezone="${timezone}"> <uri-template>
 hdfs://localhost:8020/tmp/data/${YEAR}/${MONTH}/
 ${DAY}/${HOUR}/${MINUTE}</uri-template>
 </dataset>

Emulate Asynchronous Data Processing | 173

 </datasets>
 <input-events>
 <data-in name="ds_event" dataset=" simulated_dataset ">
 <instance>${coord:current(0)}</instance>
 </data-in>
 </input-events>
 <action>
 <workflow>
 <app-path>hdfs://localhost:8020/${AppBaseDir}/mapreduce/ </app-path>
 </workflow>
 </action>
 </coordinator-app>

$ cat coord-job.properties
 AppBaseDir= hdfs://localhost:8020/user/joe/examples/
 oozie.coord.application.path= hdfs://localhost:8020/user/joe/examples/
 simulated-coord
 frequency=5
 min_frequency=5
 timeout=10
 start=2014-07-30T23:00Z
 end=2014-08-30T23:00Z
 ds_start=2014-07-30T20:00Z

HCatalog-Based Data Dependency
As we described in Chapter 7, the Oozie coordinator allows the user to specify HDFS-
directory-based data dependency. In this case, when the dependent data is available,
Oozie triggers the associated workflow. For each active coordinator action, Oozie
periodically checks the HDFS for data availability until the timeout period is reached.
However, this approach has the following challenges:

• Since Oozie is polling HDFS regularly, it creates a lot of load on the Hadoop
NameNode. Although this may be fine for most small- to medium-sized systems,
larger systems with a lot of active coordinators can destabilize the NameNode.

• This polling-based approach increases the processing load on the Oozie server as
well, which can potentially slow down the progress of other jobs and impact
Oozie’s scalability.

• Due to the polling interval, the workflow might not be started as soon as the
dependent dataset is available. For example, if the polling interval is configured
to be five minutes, Oozie can be late by as much as five minutes in launching the
workflow. In short, longer polling intervals can potentially delay the workflow
launch and shorter intervals increases the load on the Oozie server and the
Hadoop NameNode.

174 | Chapter 9: Advanced Topics

Due to these reasons, the Oozie community has always been interested in some sort
of a push model for data availability checks (instead of polling). In particular, Oozie
needs to get notified asynchronously as soon as the data is available. HCatalog is a
table and storage management layer for HDFS data that can be leveraged by Oozie to
eliminate frequent polling. Its table abstraction provides a relational view of data in
HDFS. HCatalog also offers JMS based notification as soon as any new data/partition
is registered with HCatalog. Oozie exploits these notifications to trigger the work‐
flows to avoid HDFS polling. In summary, Oozie provides two approaches for data
triggers:

• HDFS-data-directory-based dependency which is implemented using polling
• HCatalog-table/partition-based data dependency using push notifications.

Although a table/partition-based approach is better, it requires the following addi‐
tional work:

• HCatalog should be installed in the Hadoop cluster.
• The data producers need to write the data through HCatalog in addition to the

conventional HDFS write. It might require some development effort from the
data producers to adopt this new approach.

• A JMS-based messaging system such as ActiveMQ should be installed to transmit
the notifications.

The pieces listed here are all external to Oozie. In addition, the Oozie installation
needs to follow a few extra steps to support table/partition-based data dependency
that can be found in the HCatalog configuration.

We present this new paradigm at a very high level in Figure 9-2. From the user’s per‐
spective, the main change is to specify a new HCatalog URI for dataset definition in
the Oozie coordinator XML. Like HDFS, Oozie supports a similar pattern in URI def‐
inition for HCatalog. One such dataset definition is presented here:

<dataset name="hcat_dataset" frequency="${coord:days(1)}"
 initial-instance="2009-02-15T08:15Z" timezone="America/Los_Angeles">
 <uri-template>
 hcat://myhcatmetastore:9080/database1/table1/datestamp=${YEAR}
 ${MONTH}${DAY}${HOUR};region=USA
 </uri-template>
</dataset>

The key differences in URI definition between directory-based and table-based
approaches are as follows.

• HCatalog-based URI uses hcat in place of hdfs as scheme name.
• It uses the Hive metastore server endpoint, replacing the NameNode server.

HCatalog-Based Data Dependency | 175

http://bit.ly/oozie-hcatalog
http://activemq.apache.org
http://bit.ly/oozie-hcatalog-config

• HCatalog implements traditional database concepts, which means it can have
multiple tables. In turn, each table can have multiple partitions that are defined
using partition key-value pairs. In this example, datestamp and region are two
partition keys that identify one logical partition.

Figure 9-2. Oozie coordinator interactions with HDFS, HCatalog, and Message Bus to
support data triggers

This feature is still maturing, but is important for very large and heavily loaded sys‐
tems (further explanation and usage information can be found in the Apache Oozie
documentation).

In this chapter, we covered a few advanced use cases and features of the Oozie work‐
flow and coordinator. We mainly explained Oozie’s user and system JAR management
and security features. Additionally, we introduced a cron-like scheduling mechanism
using the coordinator and explained HCatalog integration with Oozie.

176 | Chapter 9: Advanced Topics

http://bit.ly/oozie-hcatalog-integration
http://bit.ly/oozie-hcatalog-integration

CHAPTER 10

Developer Topics

In previous chapters, we primarily focused on how to use and manage Oozie effi‐
ciently. We explained the details of the Oozie service and the various features it sup‐
ports. Oozie users and administrators were the target audience for those chapters. In
this chapter, we cover Oozie from a developer’s perspective. In particular, we discuss
how to leverage Oozie’s extensible framework to expand and broaden its feature set.
We see how to add custom EL functions and how to develop new synchronous and
asynchronous action types.

Developing Custom EL Functions
The parameterization framework of Oozie enables users to easily build reusable and
manageable applications. This feature includes variable substitution and EL functions
for workflows, coordinators, and bundles. We discussed this in detail in “Parameteri‐
zation” on page 86. More specifically, Oozie provides a bunch of built-in EL functions
for most of the common use cases. However, users often feel the need for EL func‐
tions for new or special use cases. The parameterization framework of Oozie is exten‐
sible and allows the addition of new functions with minimal effort. In this section, we
describe the steps needed to add an EL function.

Requirements for a New EL Function
Before deciding to write a new EL function, users must first determine whether it is
even a good idea to develop a new function. It is highly recommended that the new
EL function be simple, fast, and robust. This is critical because Oozie executes the EL
functions on the Oozie server. A poorly written function can add unnecessary over‐
head to the server and threaten Oozie’s stability. Also, if the function runs for a long
time, it could slow down the Oozie server.

177

In general, the new function should not perform any resource-intensive operation or
be dependent on external systems and services. For these types of requirements, users
are advised to use either the Java or shell action defined in “Java Action” on page 52
and “Shell Action” on page 67 instead of an EL function. After due consideration, if it
is still determined that implementing a new EL function is the right way to go, it’s
important that the user makes sure the function is robust, stable, reviewed, and tes‐
ted. For instance, it will be highly inconvenient if an Oozie application fails due to an
unhandled exception caused by some edge case in the new EL function.

Typically, the Oozie administrator in the organization has to approve any new EL
function. The Oozie web application archive (oozie.war) should contain the new JAR
supporting the new EL function. In most organizations, it would be necessary for the
administrator to help inject the new JAR into the Oozie server and to configure it
accordingly. An Oozie server restart is also required to make the new EL function
available. In other words, end users cannot write and deploy their own EL functions
without the help of the Oozie administrator.

Implementing a New EL Function
In this section, we describe how to develop and deploy a new EL function into Oozie.
We also present a workflow demonstrating the usage of the new EL function.

Writing a new EL function
Oozie doesn’t require users to implement a specific interface or extend a particular
base class in order to write a new EL function. However, the function should be a
public static method in a Java class. For example, let’s implement a basic utility
method to tokenize a string using a specific pattern and return a token at a particular
position.

The following Java code shows a sample implementation. We need to compile and
package this class into a JAR file (say oozie-custom-el.jar):

 package com.oreilly.oozie.customel;

 public class CustomELFunctions {
 public static String splitAndGet(String str, String expr, int pos) {
 if(str == null || expr == null || pos < 0) {
 return null;
 }
 String[] splitArr = str.split(expr, pos + 1);
 if(splitArr.length <= pos) {
 return null;
 }
 return splitArr[pos];
 }
 }

178 | Chapter 10: Developer Topics

Deploy the new EL function
To deploy the new EL function on the Oozie server, we need to inject the JAR created
in the previous step. The ideal way to do this is to follow the steps described in
“Install Oozie Server” on page 26. The only additional step is to copy the custom JAR
(oozie-custom-el.jar) to the libext/ directory before executing the command bin/
oozie-setup.sh prepare-war.

Next, we need to configure the Oozie server by adding these lines to the conf/oozie-
site.xml file. The property oozie.service.ELService.ext.functions.workflow
must include all maps of the extended EL function to the associated class and
method. Multiple map entries are separated by commas. The following example
shows how to add the new function splitAndGet to the Oozie system:

 <property>
 <name>oozie.service.ELService.ext.functions.workflow</name>
 <value>
 splitAndGet=com.oreilly.oozie.customel.CustomELFunctions#splitAndGet
 </value>
 <description>
 EL functions declarations, separated by commas, format is
 [PREFIX:]NAME=CLASS#METHOD. This property is a convenience
 property to add extensions to the built in executors without
 having to include all the built in ones.
 </description>
 </property>

An optional prefix can be added to the function name in the decla‐
ration to help organize the functions into logical groups. For exam‐
ple, we could have used custom:splitAndGet as the name. If you
choose to use this optional prefix, you’ll need to use it in your
workflow.xml file as well.

After including the JAR and updating the configuration, we need to restart the Oozie
server. Alternatively, in the development phase, we can short-circuit the JAR injection
and oozie.war file re-creation. For testing purposes, we can directly copy the JAR into
the WEB-INF/lib directory. But we still need to update the configuration and restart
the Oozie server.

If users want to support any new EL function at the coordinator
level, they need to modify the coordinator-specific property in the
oozie-site.xml file. Check the oozie-default.xml file for more details
on a variety of coordinator related properties available to support
such extensions.

Developing Custom EL Functions | 179

http://bit.ly/oozie-default

Using the new function
Now that we have seen how a developer can implement a new function and how an
administrator can add it to the Oozie server, we will see how any user on the system
can use this EL function in her workflow definition. We borrowed the following
example from the java-main example that comes with the Oozie distribution. We
have added the line <arg>${splitAndGet("I Installed Apache Oozie!", " ",
2)}</arg> here to demonstrate the usage of the new EL function. In this example, the
EL function returns Apache and that is passed as the second argument to the Java
main class:

<workflow-app xmlns="uri:oozie:workflow:0.5" name="java-main-wf">
 <start to="java-node"/>
 <action name="java-node">
 <java>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>${queueName}</value>
 </property>
 </configuration>
 <main-class>org.apache.oozie.example.DemoJavaMain</main-class>
 <arg>Hello</arg>
 <arg>${splitAndGet("I Installed Apache Oozie!", " ", 2)}</arg>
 </java>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>Java failed, error message[${wf:errorMessage(wf:lastErrorNode())}]
 </message>
 </kill>
 <end name="end"/>
</workflow-app>

Supporting Custom Action Types
Oozie provides a set of common action types, which we described in “Action Types”
on page 43. Depending on how Oozie executes an action, the workflow actions are
broadly divided into two categories, synchronous and asynchronous, as explained in
“Synchronous Versus Asynchronous Actions” on page 73. Oozie executes the syn‐
chronous action on the Oozie server and blocks the execution thread until it com‐
pletes. In this model, each execution instance of the action shares resources with the
Oozie server and impacts Oozie’s performance. Moreover, there is no isolation
between the execution of Oozie’s services and the execution of the action, which can
potentially destabilize the Oozie server. So adding a new synchronous action type is

180 | Chapter 10: Developer Topics

highly discouraged. Users should consider adding it only if the action is simple, runs
for a very short period of time, and doesn’t execute any user code.

On the other hand, Oozie starts an asynchronous action and immediately returns
without waiting for the action to finish. The actual action execution occurs outside
the Oozie server on the Hadoop compute nodes. When the spawned action com‐
pletes, it informs Oozie through a callback. The asynchronous execution model guar‐
antees isolation between the action, which can run user code, and the execution of
Oozie’s core services. So the recommended way of writing a heavy-duty action is to
use the asynchronous model. In this section, we cover how to write both types of
actions.

Creating a Custom Synchronous Action
Let’s now look at the steps required to support a new synchronous action type. The
first step is to write a new action executor followed by writing an XML schema
(XSD) file for the new action. We should then deploy the new action type onto the
Oozie server through the oozie-site.xml. Finally, we will show how to write and sub‐
mit a test workflow using the new action type.

In this example, we will implement a new synchronous action that can execute a SQL
statement against any MySQL instance. The output of the SQL can either be stored in
a local file on the Oozie server machine or written to stdout.

Note that this is merely an example to demonstrate the required
steps to write a new synchronous action. Ideally, this specific kind
of action should not be a synchronous type.

Writing an ActionExecutor
Every action executor class should extend Oozie’s ActionExecutor class, which is part
of Oozie’s core package. Developers should then implement the following methods
required by Oozie:

Constructor
Action developers need to write a no-arg constructor that ultimately calls the
super-class constructor passing the new action name (e.g., super("syncMysql")).
End users will use this name to define the new action type in the workflow XML.

start(ActionExecutor.Context context, Action action)
Oozie invokes this method when it needs to execute the action. Oozie passes two
parameters to this method. The first parameter context provides the APIs to
access all workflow configurations/variables for this action, set the action status,
and return any data to be used in the execution path. The second parameter

Supporting Custom Action Types | 181

action includes the action’s definition from the workflow XML. All synchronous
actions must override this method because this method performs the actual exe‐
cution. At the end, the method needs to call context.setExecution
Data(externalStatus, actionData) to pass back the action status and any
action-specific data.

check(ActionExecutor.Context context, Action action)
Oozie calls this method to check the action status. For synchronous actions,
Oozie does not need or call this method. Therefore, for this example, it’s recom‐
mended this method just throw an UnsupportedOperationException.

kill(ActionExecutor.Context context, Action action)
Oozie executes this method when it needs to kill the action for any reason. Typi‐
cal implementation of this method calls context.setEndData(status,
signalValue), passing Action.Status.KILLED as the status and ERROR as the sig‐
nalValue.

end(ActionExecutor.Context context, Action action)
Oozie invokes this method when the execution is finished. In this method, the
action executor should perform any cleanup required after completion. The
implementation usually calls context.setEndData(status, signalValue). The
status and signal value determine the next course of action.

isCompleted(externStatus)
This utility method is used to determine if an action status is in a terminal state.

These methods are required for Oozie to run any action. Additionally, we implement
two new methods for this specific action: runMySql() to execute the SQL and
writeResultSet() to store the output into a file. As mentioned earlier, the start()
method is the entry point for the execution of a synchronous action. At the very
beginning of this method, we need to retrieve the action’s definition and parse it using
an XML parser. The actual schema of the action definition is defined in the action’s
XSD file, which we discuss in the next section:

public class MySQLSyncActionExecutor extends ActionExecutor {

 private static final String SYNC_MYSQL_ACTION_NS =
 "uri:oozie:sync-mysql-action:0.1";
 private static final String ACTION_NAME = "syncMysql";

 protected MySQLSyncActionExecutor() {
 super(ACTION_NAME);
 }

 @Override
 public void start(Context context, WorkflowAction action)
 throws ActionExecutorException {

182 | Chapter 10: Developer Topics

 context.setStartData("-", "-", "-");
 try {
 Element actionXml = XmlUtils.parseXml(action.getConf());
 Namespace ns = Namespace.getNamespace(SYNC_MYSQL_ACTION_NS);

 String jdbcUrl = actionXml.getChildTextTrim("jdbcUrl", ns);
 String sql = actionXml.getChildTextTrim("sql", ns);
 String sqlOutputFilePath = actionXml.getChildTextTrim(
 "sql_output_file_path", ns);
 runMysql(jdbcUrl, sql, sqlOutputFilePath);
 context.setExecutionData("OK", null);
 } catch (JDOMException e) {
 throw convertException(e);
 }
 }

 @Override
 public void end(Context context, WorkflowAction action)
 throws ActionExecutorException {
 if (action.getExternalStatus().equals("OK")) {
 context.setEndData(WorkflowAction.Status.OK,
 WorkflowAction.Status.OK.toString());
 } else {
 context.setEndData(WorkflowAction.Status.ERROR,
 WorkflowAction.Status.ERROR.toString());
 }
 }

 @Override
 public void kill(Context context, WorkflowAction action)
 throws ActionExecutorException {
 context.setEndData(WorkflowAction.Status.KILLED, "ERROR");
 }

 @Override
 public void check(Context arg0, WorkflowAction arg1)
 throws ActionExecutorException {
 throw new UnsupportedOperationException();
 }

 private static Set<String> COMPLETED_STATUS = new HashSet<String>();
 static {
 COMPLETED_STATUS.add("SUCCEEDED");
 COMPLETED_STATUS.add("KILLED");
 COMPLETED_STATUS.add("FAILED");
 COMPLETED_STATUS.add("FAILED_KILLED");
 }

 @Override
 public boolean isCompleted(String externalStatus) {
 return COMPLETED_STATUS.contains(externalStatus);
 }

Supporting Custom Action Types | 183

 /*
 * Execute a sql statement
 */
 private void runMysql(String jdbcUrl, String sql, String sqlOutputFilePath)
 throws ActionExecutorException {
 Connection connect = null;
 Statement statement = null;
 ResultSet resultSet = null;
 try {
 // this will load the MySQL driver, each DB has its own driver
 Class.forName("com.mysql.jdbc.Driver");
 // setup the connection with the DB.
 connect = DriverManager.getConnection(jdbcUrl);
 // statements allow to issue SQL queries to the database
 statement = connect.createStatement();
 // resultSet gets the result of the SQL query
 resultSet = statement.executeQuery(sql);
 writeResultSet(resultSet, sqlOutputFilePath);
 } catch (Exception e) {
 throw convertException(e);
 } finally {
 try {
 if (resultSet != null)
 resultSet.close();
 if (statement != null)
 statement.close();
 if (connect != null)
 connect.close();
 } catch (Exception e) {
 throw convertException(e);
 }
 }
 }

 private void writeResultSet(ResultSet resultSet, String sqlOutputFilePath)
 throws Exception {
 // resultSet is initialised before the first data set
 PrintWriter out;
 if (sqlOutputFilePath != null && sqlOutputFilePath.length() > 0) {
 out = new PrintWriter(sqlOutputFilePath);
 } else {
 out = new PrintWriter(System.out);
 }
 // Get the metadata
 ResultSetMetaData md = resultSet.getMetaData();
 // Loop through the result set
 while (resultSet.next()) {
 for (int i = 1; i <= md.getColumnCount(); i++) {
 out.println(md.getColumnName(i) + "=" + resultSet.getString(i));
 }
 }

184 | Chapter 10: Developer Topics

 out.close();
 }
 }

The compilation of any action executor class requires at least two
Oozie JARs: oozie-core and oozie-client. The JARs for the most
recent versions (starting with version 4.1.0) are published in a
Maven repository. If for some reason it is not available, developers
will need to get the JARs by building the Oozie source code them‐
selves.

Writing the XML schema
A schema file is required for strict enforcement of the XML syntax of the action defi‐
nition that the user writes in her workflow.xml file. The details of writing a good XML
schema can be found online. The following example XSD file is self-explanatory and
very similar to any other Oozie action:

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sync-mysql="uri:oozie:sync-mysql-action:0.1"
 elementFormDefault="qualified"
 targetNamespace="uri:oozie:sync-mysql-action:0.1">

 <xs:complexType name="SYNC_MYSQL_TYPE">
 <xs:sequence>
 <xs:element name="jdbcUrl" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="sql" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="sql_output_file_path" type="xs:string" minOccurs="0"
 maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="syncMysql" type="sync-mysql:SYNC_MYSQL_TYPE"/>
 </xs:schema>

Readers might remember that some standard Oozie actions like “Java Action” on page
52 and “Shell Action” on page 67 support an element called <capture-output> that
can be used to pass the output back to the Oozie context. The example action shown
here writes the results to an output file (in the writeResultSet() function) and does
not support the <capture-output> feature. This is the right approach for this partic‐
ular action given that the output generated could be large and not suitable for passing
between actions. But developers can implement <capture-output> in their custom
actions if the use case demands it. The key steps in supporting this feature are to gen‐
erate the output in a properties file format and write it to a file defined by the system
property oozie.action.output.properties. Refer to the code sample in “Java
Action” on page 52 to see how to implement it (do remember to include the

Supporting Custom Action Types | 185

http://bit.ly/oozie-maven-jars
http://bit.ly/oozie-schema-ex

<capture-output> element in the schema just explained if you want your action to
support it).

Deploying the new action type
After we develop the code and the XSD file, we have to compile the code and package
them both into a JAR file. The XSD file should be at the root level of the new JAR file.
Since the preceding code uses the MySQL JDBC APIs to run the query, we would
need the mysql-connector JAR during compilation and execution. Compilation can
use either the IDE’s external classpath or the build file to access the JAR. The MySQL
JAR can even be included as part of the new JAR we are creating. We can then inject
both the JARs (or one “fat” JAR) when creating the Oozie WAR file (“Install Oozie
Server” on page 26). The newly created JAR and the MySQL JAR must be copied into
the libext/ directory before executing the bin/oozie-setup.sh prepare-war com‐
mand. However, for testing purposes, we can bypass these standard steps and directly
copy the JARs into $CATALINA_BASE/webapps/oozie/WEB-INF/lib/.
Next, we need to configure oozie-site.xml to enable Oozie to use the new action
type. There are two key properties to configure. The property
oozie.service.ActionService.executor.ext.classes specifies a comma-
separated list of new executor classes. For this example, we should append
com.oreilly.oozie.sync.customaction.MySQLSyncActionExecutor to that list.
The oozie.service.SchemaService.wf.ext.schemas property defines the addi‐
tional schema files required for new actions. For this example, we add
sync_mysql-0.1.xsd. After all these configuration changes, the Oozie server needs to
be restarted as always:

<property>
 <name>oozie.service.ActionService.executor.ext.classes</name>
 <value>
 org.apache.oozie.action.email.EmailActionExecutor,
 org.apache.oozie.action.hadoop.HiveActionExecutor,
 org.apache.oozie.action.hadoop.ShellActionExecutor,
 org.apache.oozie.action.hadoop.SqoopActionExecutor,
 org.apache.oozie.action.hadoop.DistcpActionExecutor,
 com.oreilly.oozie.sync.customaction.MySQLSyncActionExecutor
 </value>
</property>

<property>
 <name>oozie.service.SchemaService.wf.ext.schemas</name>
 <value>
 shell-action-0.1.xsd,shell-action-0.2.xsd,shell-action-0.3.xsd,
 email-action-0.1.xsd, hive-action-0.2.xsd,hive-action-0.3.xsd,
 hive-action-0.4.xsd,hive-action-0.5.xsd,sqoop-action-0.2.xsd,
 sqoop-action-0.3.xsd,sqoop-action-0.4.xsd,ssh-action-0.1.xsd,
 ssh-action-0.2.xsd,distcp-action-0.1.xsd,distcp-action-0.2.xsd,
 oozie-sla-0.1.xsd,oozie-sla-0.2.xsd, sync_mysql-0.1.xsd

186 | Chapter 10: Developer Topics

 </value>
</property>

Using the new action type
Once the new action is deployed, it’s time to verify it. We will use the following simple
workflow.xml to test it. The goal here is to execute an SQL query and write the output
to a local file on the Oozie server. The corresponding job.properties file is shown here
as well. This job assumes that the MySQL server is configured and running properly.
Let’s also assume that a database named oozie_book and a table named income are
already in place with the right schema and a few records. The name of the DB, login,
password, and the table are all defined in the job.properties file. The output directory
for this Oozie job is configured as $OOZIE_HOME/my_sync_sqloutput.txt. Again,
this is just an example and a synchronous action is not the best approach for an oper‐
ation like this:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="sync-mysql-wf">
 <start to="sync-mysql-node"/>
 <action name="sync-mysql-node">
 <syncMysql xmlns="uri:oozie:sync-mysql-action:0.1">
 <jdbcUrl>${jdbcURL}</jdbcUrl>
 <sql>${sql}</sql>
 <sql_output_file_path>${SQL_OUTPUT_PATH}</sql_output_file_path>
 </syncMysql>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>syncMysql failed, error message
 [${wf:errorMessage(wf:lastErrorNode())}]
 </message>
 </kill>
 <end name="end"/>
</workflow-app>

$ cat job.properties
 nameNode=hdfs://localhost:8020
 queueName=default
 examplesRoot=examples

 oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/apps/
 sync_mysql
 oozie.use.system.libpath=true
 jdbcURL=jdbc:mysql://localhost:3306/oozie_book?user=oozie_book_user&
 password=oozie_book_pw
 sql=select count(*) from oozie_book.income;
 SQL_OUTPUT_PATH=my_sync_sqloutput.txt

Supporting Custom Action Types | 187

Overriding an Asynchronous Action Type
Let’s quickly recap Oozie’s execution model as described in “Action Execution Model”
on page 40. For an asynchronous action, Oozie submits a launcher mapper task to
Hadoop along with all the required JARs and configuration for executing the actual
action. In particular, there are two important classes involved in executing any asyn‐
chronous action in Oozie. The class derived from ActionExecutor submits the
launcher job to Hadoop. It also includes the required JARs and configuration for the
actual action. ActionExecutor uses Hadoop’s distributed cache to pass the JARs and
configuration to the correct compute node. The launcher job ultimately starts a single
map task that is implemented by Oozie to execute any action type. This mapper is
widely known as the LauncherMapper.

The map task (LauncherMapper) invokes the main() method of the action execution
class that runs on the compute node. This class is known as LauncherMain. Different
action types extend this class to create their own main class that executes action-
specific code. For example, the PigMain class runs the Pig script and MapReduceMain
submits the actual MapReduce job. In this section, we discuss how to override these
Main classes. Users can write these custom main classes to override the default imple‐
mentation and package them with their application. This doesn’t require any modifi‐
cation on the server side of Oozie. The content in this section will help us understand
the next section, where we describe how to write a new asynchronous action from the
ground up using the ActionExecutor and the associated main class.

The out-of-the-box <map-reduce> action supports only the old Hadoop API . In
other words, it supports mapper and reducer classes written using the mapred (old)
API. However, there is a way to use the new mapreduce API for the Hadoop job using
some special configuration as described in “Supporting New API in MapReduce
Action” on page 165. There is also another way to execute a MapReduce job that’s
written using the new API by overriding the default Main class of the <map-reduce>
action. In this example, we will see how to replace the old API-based job submission
with the new API.

Implementing the New ActionMain Class
As explained earlier, the default <map-reduce> main class (MapreduceMain) supports
executing jobs that are written using org.apache.hadoop.mapred package, also
known as the old API. In this example, we will create a new main class called
MapReduceNewMain that submits jobs written using the new API
(org.apache.hadoop.mapreduce). However, we will still use the default <map-
reduce> action executor. This allows the users to use the existing <map-reduce>
action type with minimal changes. This implementation is completely in the user
domain and this change doesn’t require any modification or restart of the Oozie

188 | Chapter 10: Developer Topics

server. The user can simply replace the original Main class with the new one during
job submission.

The implementation of the MapReduceNewMain class below is based on the existing
MapreduceMain class. A lot of boilerplate code is borrowed from the exiting imple‐
mentation. The main difference is to use the new mapreduce API for job submission.
In particular, we replace the JobClient class with the Job class and the JobConf with
the Configuration class. The complete implementation is shown here:

 package com.oreilly.oozie.custommain;

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.mapreduce.Job;
 import org.apache.oozie.action.hadoop.LauncherMain;

 import java.util.HashSet;
 import java.util.Map;
 import java.util.Properties;
 import java.io.IOException;
 import java.io.FileOutputStream;
 import java.io.OutputStream;
 import java.io.File;

 public class MapReduceNewMain extends LauncherMain {

 public static final String OOZIE_MAPREDUCE_UBER_JAR =
 "oozie.mapreduce.uber.jar";

 public static void main(String[] args) throws Exception {
 run(MapReduceNewMain.class, args);
 }

 protected void run(String[] args) throws Exception {
 System.out.println();
 System.out.println("Oozie Map-Reduce action configuration");
 System.out.println("=======================");

 // Loading the action conf prepared by Oozie
 // This is the same action configuration defined in the workflow
 // XML file as pat of the <configuration> section.
 Configuration actionConf = new Configuration(false);
 actionConf.addResource(new Path("file:///", System
 .getProperty("oozie.action.conf.xml")));

 logMasking("New Map-Reduce job configuration:", new HashSet<String>(),
 actionConf);

 System.out.println("Submitting Oozie action Map-Reduce job");

Overriding an Asynchronous Action Type | 189

 System.out.println();
 // submitting job
 Job job = submitJob(actionConf);
 System.out.println("After job submission");
 // propagating job id back to Oozie
 String jobId = job.getJobID().toString();
 System.out.println("Job ID is :" + jobId);
 Properties props = new Properties();
 props.setProperty("id", jobId);
 File idFile = new File(
 System.getProperty("oozie.action.newId.properties"));
 OutputStream os = new FileOutputStream(idFile);
 props.store(os, "");
 os.close();

 System.out.println("=======================");
 System.out.println();
 }

 protected void addActionConf(Configuration conf, Configuration actionConf) {
 for (Map.Entry<String, String> entry : actionConf) {
 conf.set(entry.getKey(), entry.getValue());
 }
 }

 protected Job submitJob(Configuration actionConf) throws Exception {
 Configuration conf = new Configuration();
 addActionConf(conf, actionConf);

 // Propagate delegation related props from the launcher job to the MR job.
 // This is critical on secure Hadoop where delegation tokens
 // will be made available through these settings.
 if (System.getenv("HADOOP_TOKEN_FILE_LOCATION") != null) {
 conf.set("mapreduce.job.credentials.binary",
 System.getenv("HADOOP_TOKEN_FILE_LOCATION"));
 }
 Job job = null;
 try {
 job = createJob(conf);
 job.submit();
 } catch (Exception ex) {
 throw ex;
 }
 return job;
 }

 protected Job createJob(Configuration conf) throws IOException {
 @SuppressWarnings("deprecation")
 Job job = new Job(conf);
 // Set for uber Jar
 String uberJar = conf.get(OOZIE_MAPREDUCE_UBER_JAR);
 if (uberJar != null && uberJar.trim().length() > 0) {

190 | Chapter 10: Developer Topics

 job.setJar(uberJar);
 }
 return job;
 }

}

Testing the New Main Class
After we compile the new main class and package it into a JAR file, we are ready to
test this new functionality. The following workflow.xml defines the mapper and
reducer written using the new mapreduce API. Readers are advised to pay close atten‐
tion to the property names corresponding to the new API in addition to the
oozie.launcher.action.main.class. This workflow is based on the wordcount
example that comes with the Hadoop distribution:

 <workflow-app xmlns="uri:oozie:workflow:0.5" name="map-reduce-wf">
 <start to="mr-node"/>
 <action name="mr-node">
 <map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <prepare>
 <delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/
 output-data/${outputDir}"/>
 </prepare>
 <configuration>
 <!-- Using a custom MapReduceMain for new API class-->
 <property>
 <name>oozie.launcher.action.main.class</name>
 <value>com.oreilly.oozie.custommain.MapReduceNewMain</value>
 </property>
 <property>
 <name>mapreduce.job.queuename</name>
 <value>${queueName}</value>
 </property>
 <property>
 <name>mapreduce.job.map.class</name>
 <value>org.apache.hadoop.examples.WordCount$TokenizerMapper</value>
 </property>
 <property>
 <name>mapreduce.job.reduce.class</name>
 <value>org.apache.hadoop.examples.WordCount$IntSumReducer</value>
 </property>
 <property>
 <name>mapreduce.job.output.key.class</name>
 <value>org.apache.hadoop.io.Text</value>
 </property>
 <property>
 <name>mapreduce.job.output.value.class</name>

Overriding an Asynchronous Action Type | 191

 <value>org.apache.hadoop.io.IntWritable</value>
 </property>
 <property>
 <name>mapreduce.input.fileinputformat.inputdir</name>
 <value>/user/${wf:user()}/${examplesRoot}/input-data/text</value>
 </property>
 <property>
 <name>mapreduce.output.fileoutputformat.outputdir</name>
 <value>/user/${wf:user()}/${examplesRoot}/output-data/${outputDir}
 </value>
 </property>
 </configuration>
 </map-reduce>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>Map/Reduce failed, error message[${wf:errorMessage
 (wf:lastErrorNode())}]</message>
 </kill>
 <end name="end"/>
</workflow-app>

Next we need to include the required JARs in the workflow lib/ directory. We need to
copy the JAR that includes MapReduceNewMain class. As always, we also need to copy
the JAR that includes the mapper (TokenizerMapper) and reducer (IntSumReducer)
classes. Since we reuse the Apache Hadoop example, we have to copy the hadoop-
mapreduce-examples JAR into the lib/ directory to be able to run this example:

$ hdfs dfs -put my-custom-main
$ hdfs dfs -lsr my-custom-main
 -rw-r--r-- 1 joe jgrp 172 2014-11-15 14:48 my-custom-main/job.properties
 drwxr-xr-x - joe jgrp 0 2014-11-15 14:48 my-custom-main/lib
 -rw-r--r-- 1 joe jgrp 270261 2014-11-15 14:48 my-custom-main/lib/hadoop-
 mapreduce-examples-2.3.0.jar
 -rw-r--r-- 1 joe jgrp 19949 2014-11-15 14:48 my-custom-main/lib/
 oozie-extensions.jar
 -rw-r--r-- 1 joe jgrp 2452 2014-11-15 14:48 my-custom-main/workflow.xml

We will use the following job.properties file and commands to run the workflow:
$cat job.properties
 nameNode=hdfs://localhost:8020
 #Actually RM endpoint for Hadoop 2.x
 jobTracker=localhost:8032
 queueName=default

 oozie.wf.application.path=${nameNode}/user/${user.name}/my-custom-main
 outputDir=map-reduce-new

$ oozie job -config job.properties -run
 job: 0000001-141115153201961-oozie-joe-W

192 | Chapter 10: Developer Topics

Creating a New Asynchronous Action
In this section, we discuss the steps required to develop a completely new asynchro‐
nous action. Most of the steps are already discussed in the previous two sections and
we tweak them to develop a new action type. In “Creating a Custom Synchronous
Action” on page 181, we described how to implement a synchronous action. In short,
we created a new ActionExcutor, a new XSD file, and then ultimately deployed it on
the Oozie server. Then, in “Overriding an Asynchronous Action Type” on page 188,
we explained the steps required to override the ActionMain of an existing asynchro‐
nous action. To be more specific, the previous example only overrides the ActionMain
class that runs on the compute node. It doesn’t modify the ActionExecutor that runs
on the Oozie server and is responsible for launching the LauncherMapper.

Writing an Asynchronous Action Executor
The asynchronous action executor usually extends the JavaActionExecutor that
comes with the oozie-core package. Most of the common functionalities are already
implemented in the JavaActionExecutor. This important class basically packages the
required classes (e.g., ActionMain class) and configuration and kicks off the launcher
job on Hadoop. It also passes the JARs and configuration to the launcher mapper
through the Hadoop distributed cache. The launcher mapper ultimately invokes the
main() method of the ActionMain class. The main() method implements the actual
action such as executing a Pig script for the <pig> action.

Any action executor that extends JavaActionExecutor needs to be
implemented under the org.apache.oozie.action.hadoop pack‐
age, though the code can reside outside the Oozie code base. This is
required because of a bug/constraint in the JavaActionExecutor
class where some of the required methods are declared with “pack‐
age” scope instead of “protected”. So any derived class needs to be
under the same package name.

Here we implement the same use case of executing a MySQL query that we described
in “Creating a Custom Synchronous Action” on page 181 but using an asynchronous
action:

 package org.apache.oozie.action.hadoop;

 import java.util.List;

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.Path;
 import org.apache.oozie.action.ActionExecutorException;
 import org.apache.oozie.action.hadoop.JavaActionExecutor;
 import org.apache.oozie.action.hadoop.LauncherMain;

Creating a New Asynchronous Action | 193

 import org.apache.oozie.action.hadoop.LauncherMapper;
 import org.apache.oozie.action.hadoop.MapReduceMain;
 import org.jdom.Element;
 import org.jdom.Namespace;

 public class MySQLActionExecutor extends JavaActionExecutor {

 private static final String MYSQL_MAIN_CLASS_NAME =
 "org.apache.oozie.action.hadoop.MySqlMain";
 public static final String JDBC_URL = "oozie.mysql.jdbc.url";
 public static final String SQL_COMMAND = "oozie.mysql.sql.command";
 public static final String SQL_OUTPUT_PATH = "oozie.mysql.sql.output.path";

 public MySQLActionExecutor() {
 super("mysql");
 }

 @Override
 protected List<Class> getLauncherClasses() {
 List<Class> classes = super.getLauncherClasses();
 classes.add(LauncherMain.class);
 classes.add(MapReduceMain.class);
 try {
 classes.add(Class.forName(MYSQL_MAIN_CLASS_NAME));
 } catch (ClassNotFoundException e) {
 throw new RuntimeException("Class not found", e);
 }
 return classes;
 }

 @Override
 protected String getLauncherMain(Configuration launcherConf,
 Element actionXml) {
 return launcherConf.get(LauncherMapper.CONF_OOZIE_ACTION_MAIN_CLASS,
 MYSQL_MAIN_CLASS_NAME);
 }

 @Override
 @SuppressWarnings("unchecked")
 Configuration setupActionConf(Configuration actionConf, Context context,
 Element actionXml, Path appPath) throws ActionExecutorException {
 super.setupActionConf(actionConf, context, actionXml, appPath);
 Namespace ns = actionXml.getNamespace();

 String sql = actionXml.getChild("sql", ns).getTextTrim();
 String jdbcUrl = actionXml.getChild("jdbcUrl", ns).getTextTrim();
 String sqlOutPath = actionXml.getChild("sql_output_file_path", ns)
 .getTextTrim();

 actionConf.set(JDBC_URL, jdbcUrl);
 actionConf.set(SQL_COMMAND, sql);
 actionConf.set(SQL_OUTPUT_PATH, sqlOutPath);

194 | Chapter 10: Developer Topics

 return actionConf;
 }

 @Override
 protected String getDefaultShareLibName(Element actionXml) {
 return "mysql";
 }
 }

In the preceding class, the constructor just calls its super-class constructor passing
the new action name (i.e., mysql). This name is what will be used as an action type
when the user writes the workflow definition. The method getLauncherClasses
returns the list of classes required to be executed by the launcher mapper. Oozie
server makes these classes available to the launcher mapper through the distributed
cache. It includes the LauncherMain base class and the actual action main class (MySql
Main, described next). The MapReduceMain class is included only to support a few util‐
ity methods.

The method getLauncherMain returns the ActionMain class
(org.apache.oozie.action.hadoop.MySqlMain). The launcher map code calls the
main() method of this class. The setupActionConf method adds the configuration
that is passed to the ActionMain class through a configuration file. The last method
getDefaultShareLibName returns the name of the subdirectory under the system
sharelib directory. This subdirectory hosts most of the JARs required to execute this
action. In this example, the mysql-connector-java-*.jar file needs to be copied to the
mysql/ subdirectory under the sharelib directory.

Writing the ActionMain Class
This example implements the same MySQL use case described in “Implementing the
New ActionMain Class” on page 188. The main difference is that this action is asyn‐
chronous while the previous example implemented a synchronous action. The main
class in this example reuses most of the MySQL query execution code from the previ‐
ous example:

 package org.apache.oozie.action.hadoop;

 import java.io.BufferedWriter;
 import java.io.File;
 import java.io.OutputStreamWriter;
 import java.sql.Connection;
 import java.sql.DriverManager;
 import java.sql.ResultSet;
 import java.sql.ResultSetMetaData;
 import java.sql.Statement;

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.FileSystem;

Creating a New Asynchronous Action | 195

 import org.apache.hadoop.fs.Path;
 import org.apache.oozie.action.hadoop.LauncherMain;
 import org.apache.oozie.action.hadoop.LauncherSecurityManager;

 public class MySqlMain extends LauncherMain {

 public static void main(String[] args) throws Exception {
 run(MySqlMain.class, args);
 }

 protected void run(String[] args) throws Exception {
 System.out.println();
 System.out.println("Oozie MySql action configuration");
 System.out
 .println("===");
 // loading action conf prepared by Oozie
 Configuration actionConf = new Configuration(false);

 String actionXml = System.getProperty("oozie.action.conf.xml");
 if (actionXml == null) {
 throw new RuntimeException(
 "Missing Java System Property [oozie.action.conf.xml]");
 }
 if (!new File(actionXml).exists()) {
 throw new RuntimeException("Action Configuration XML file ["
 + actionXml + "] does not exist");
 }

 actionConf.addResource(new Path("file:///", actionXml));
 String jdbcUrl = actionConf.get(MySQLActionExecutor.JDBC_URL);
 if (jdbcUrl == null) {
 throw new RuntimeException("Action Configuration does not have "
 + MySQLActionExecutor.JDBC_URL + " property");
 }

 String sqlCommand = actionConf.get(MySQLActionExecutor.SQL_COMMAND);
 if (sqlCommand == null) {
 throw new RuntimeException("Action Configuration does not have "
 + MySQLActionExecutor.SQL_COMMAND + " property");
 }

 String sqlOutputPath = actionConf
 .get(MySQLActionExecutor.SQL_OUTPUT_PATH);
 if (sqlOutputPath == null) {
 throw new RuntimeException("Action Configuration does not have "
 + MySQLActionExecutor.SQL_OUTPUT_PATH + " property");
 }

 System.out.println("Mysql coomands :" + sqlCommand + " with JDBC url :"
 + jdbcUrl + " sqlOutputPath " + sqlOutputPath);
 System.out
 .println("==");

196 | Chapter 10: Developer Topics

 System.out.println();
 System.out.println(">>> Connecting to MySQL and executing sql now >>>");
 System.out.println();
 System.out.flush();

 try {
 runMysql(jdbcUrl, sqlCommand, sqlOutputPath);
 } catch (SecurityException ex) {
 if (LauncherSecurityManager.getExitInvoked()) {
 if (LauncherSecurityManager.getExitCode() != 0) {
 throw ex;
 }
 }
 }

 System.out.println();
 System.out.println("<<< Invocation of MySql command completed <<<");
 System.out.println();
 }

 public void runMysql(String jdbcUrl, String sql, String sqlOutputPath)
 throws Exception {
 Connection connect = null;
 Statement statement = null;
 ResultSet resultSet = null;
 try {
 // this will load the MySQL driver, each DB has its own driver
 Class.forName("com.mysql.jdbc.Driver");
 // setup the connection with the DB.
 System.out.println("JDBC URL :" + jdbcUrl);
 connect = DriverManager.getConnection(jdbcUrl);

 // statements allow to issue SQL queries to the database
 statement = connect.createStatement();
 // resultSet gets the result of the SQL query
 resultSet = statement.executeQuery(sql);
 writeResultSet(resultSet, sqlOutputPath);
 } finally {
 if (resultSet != null)
 resultSet.close();
 if (statement != null)
 statement.close();
 if (connect != null)
 connect.close();
 }
 }

 private void writeResultSet(ResultSet resultSet, String sqlOutputFilePath)
 throws Exception {
 Configuration configuration = new Configuration();
 Path outPath = new Path(sqlOutputFilePath);

Creating a New Asynchronous Action | 197

 BufferedWriter out = null;
 FileSystem fs = null;
 try {
 fs = outPath.getFileSystem(configuration);
 if (fs.exists(outPath)) {
 fs.delete(outPath, true);
 }
 fs.mkdirs(outPath);
 Path outFile = new Path(outPath, "sql.out");
 System.out.print("Writing output to :" + outFile);
 out = new BufferedWriter(new OutputStreamWriter(fs.create(outFile),
 "UTF-8"));

 // Get the metadata
 ResultSetMetaData md = resultSet.getMetaData();
 int recNo = 1;
 // Loop through the result set
 while (resultSet.next()) {
 out.write("Record_No=" + recNo++ + ",");
 for (int i = 1; i <= md.getColumnCount(); i++) {
 out.write(md.getColumnName(i) + "="
 + resultSet.getString(i) + ",");
 }
 out.write('\n');
 }
 } finally {
 if (out != null) {
 out.close();
 }
 if (fs != null) {
 fs.close();
 }
 }
 }
 }

The ActionMain class MySqlMain is derived from the LauncherMain class. The run()
method actually executes the MySQL query. All of the user-defined properties
defined in the workflow.xml are passed to MySqlMain class through a file. The action
configuration filename is also passed as a system property called
oozie.action.conf.xml. After loading the configuration, the main class executes the
query and stores the result into the HDFS file passed in as a job property. Alterna‐
tively, users can implement and use Oozie’s capture-output feature explained in
“Java Action” on page 52.

198 | Chapter 10: Developer Topics

The ActionMain class requires a Hadoop token if it wants to com‐
municate to any service (such as NameNode, JobTracker/Resource
Manager) running with Kerberos security enabled. The Action
Main class will need to pass the location of the token file with
property name mapreduce.job.credentials.binary in job con‐
figuration as shown in the example code in “Implementing the
New ActionMain Class” on page 188. If a user wants to pass other
kinds of credentials such as Hive meta-store or HBase token, she
can follow the instructions provided in “Supporting Custom Cre‐
dentials” on page 162.

Writing Action’s Schema
The XSD file defined in this section is very similar to the one in “Writing the XML
schema” on page 185:

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:mysql="uri:oozie:mysql-action:0.1" elementFormDefault="qualified"
 targetNamespace="uri:oozie:mysql-action:0.1">

 <xs:complexType name="MYSQL_TYPE">
 <xs:sequence>
 <xs:element name="job-tracker" type="xs:string" minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="name-node" type="xs:string" minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="job-xml" type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="configuration" type="mysql:CONFIGURATION"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="jdbcUrl" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="sql" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="sql_output_file_path" type="xs:string" minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="file" type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="archive" type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="CONFIGURATION">
 <xs:sequence>
 <xs:element name="property" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" minOccurs="1" maxOccurs="1" type="xs:string"/>
 <xs:element name="value" minOccurs="1" maxOccurs="1" type="xs:string"/>
 <xs:element name="description" minOccurs="0" maxOccurs="1"
 type="xs:string"/>

Creating a New Asynchronous Action | 199

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="mysql" type="mysql:MYSQL_TYPE"/>
 </xs:schema>

Deploying the New Action Type
The deployment of a new asynchronous action is very similar to the synchronous
action described in “Deploying the new action type” on page 186. If written outside of
the Oozie’s code base, the first step is to create a JAR that includes
MySqlActionExecutor, MySqlMain, and the mysql-0.1.xsd file. Then include this JAR
in the Oozie WAR file. After that, we modify the conf/oozie-site.xml file to include the
new action executor and the new XSD file as shown here:

<property>
 <name>oozie.service.ActionService.executor.ext.classes</name>
 <value>
 org.apache.oozie.action.email.EmailActionExecutor,
 org.apache.oozie.action.hadoop.HiveActionExecutor,
 org.apache.oozie.action.hadoop.ShellActionExecutor,
 org.apache.oozie.action.hadoop.SqoopActionExecutor,
 org.apache.oozie.action.hadoop.DistcpActionExecutor,
 org.apache.oozie.action.hadoop.MySQLActionExecutor
 </value>
</property>

<property>
 <name>oozie.service.SchemaService.wf.ext.schemas</name>
 <value>
 shell-action-0.1.xsd,shell-action-0.2.xsd,shell-action-0.3.xsd,
 email-action-0.1.xsd,hive-action-0.2.xsd, hive-action-0.3.xsd,
 hive-action-0.4.xsd,hive-action-0.5.xsd,sqoop-action-0.2.xsd,
 sqoop-action-0.3.xsd,sqoop-action-0.4.xsd,ssh-action-0.1.xsd,
 ssh-action-0.2.xsd,distcp-action-0.1.xsd,distcp-action-0.2.xsd,
 oozie-sla-0.1.xsd,oozie-sla-0.2.xsd,mysql-0.1.xsd
 </value>
</property>

If the new action is developed under the Oozie code-base, most of
these steps are not required. Those files will then be automatically
included as part of the standard Oozie build and the deployment
process.

200 | Chapter 10: Developer Topics

In addition, we need to upload the MySQL JAR into the sharelib directory using the
following commands (and then restart the Oozie server; also note that commands
must be executed by the Oozie service user—that is, (oozie):

$ hdfs dfs -mkdir share/lib/mysql
$ hdfs dfs -put ./oozie-server/webapps/oozie/WEB-INF/lib/\
 mysql-connector-java-5.1.25-bin.jar share/lib/mysql/
$ bin/oozied.sh stop
$ bin/oozied.sh start

Using the New Action Type
We follow the same steps explained in “Using the new action type” on page 187 to
build a workflow that uses the new mysql action. The relevant workflow.xml and
job.properties files are shown here:

$ cat workflow.xml
 <workflow-app xmlns="uri:oozie:workflow:0.4" name="my-mysql-wf">
 <start to="my-mysql-node"/>
 <action name="my-mysql-node">
 <mysql xmlns="uri:oozie:mysql-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <jdbcUrl>${jdbcURL}</jdbcUrl>
 <sql>${sql}</sql>
 <sql_output_file_path>${SQL_OUTPUT_PATH}</sql_output_file_path>
 </mysql>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>mysql failed, error message[${wf:errorMessage
 (wf:lastErrorNode())}]</message>
 </kill>
 <end name="end"/>
 </workflow-app>

$ cat job.propeeties
 nameNode=hdfs://localhost:8020
 jobTracker=localhost:8032
 queueName=default
 examplesRoot=examples

 oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/
 apps/mysql
 oozie.use.system.libpath=true
 jdbcURL=jdbc:mysql://localhost:3306/oozie_book?user=oozie_book_user&
 password=oozie_book_pw
 sql=select * from oozie_book.custom_actions;
 SQL_OUTPUT_PATH=my_sqloutput

Creating a New Asynchronous Action | 201

It’s fairly common to see failures with the following exception in
the launcher mapper log:

Failing Oozie Launcher, Main class
[org.apache.oozie.action.hadoop.MySqlMain], main() threw
exception, com.mysql.jdbc.Driver
java.lang.ClassNotFoundException: com.mysql.jdbc.Driver at
java.net.URLClassLoader$1.run(URLClassLoader.java:202)

This is most likely due to missing JARs. In this example, the mysql-
connecor JAR was not copied into the mysql/ subdirectory under
the sharelib on HDFS. Uploading the correct version of JARs to
the correct location will solve this problem.

In this chapter, we focused on Oozie developers and showed how to extend current
Oozie functionalities. More specifically, we elaborated on the steps required to write a
custom EL function, a new synchronous action type, and a new asynchronous action
type. In the next chapter, we will cover the operational aspects of Oozie and other
sundry topics concerning managing and debugging Oozie.

202 | Chapter 10: Developer Topics

CHAPTER 11

Oozie Operations

We covered all the functional aspects of Oozie in Chapters 4 through 8. We learned
how to write workflows, coordinators, and bundles, and mastered the fundamentals
of Oozie. Chapters 9 and 10 covered advanced topics like security and developer
extensions. In this final chapter, we will cover several operational aspects of Oozie.
We will start with the details of the Oozie CLI tool and the REST API. We will look at
the Oozie server and explore some tips on administering and tuning it for better sta‐
bility and performance. We will also cover typical operational topics like retry and
reprocessing of Oozie jobs. Last but not the least, we will look at debugging techni‐
ques and resolutions for some common failures. We will also sprinkle in a few topics
that are useful but don’t quite fit in any of the previous chapters.

Oozie CLI Tool
The primary interface for managing and interacting with Oozie is oozie, the
command-line utility that we have used throughout this book (e.g., to submit jobs,
check their status, kill them, etc.). Internally, it actually uses Oozie’s web service (WS)
API, which we will look at in detail in the next section. The CLI is available on the
Oozie client node, which is also typically the Hadoop edge node with access to all the
Hadoop ecosystem CLI clients and tools like Hadoop, Hive, Pig, Sqoop, and others.
This edge node is also usually configured to talk to and reach the Hadoop cluster,
Hive meta-store, and the Oozie server. The Oozie client only needs to talk to the
Oozie server and it’s the server’s responsibility to interact with the Hadoop cluster.

Consequently, the CLI has an -oozie option that lets you specify the location of the
server, which is also the end point for reaching the Oozie server’s web service. The
CLI also takes the Unix environment variable OOZIE_URL as the default value for the
server. It’s convenient and recommended to define this environment variable on the
Oozie client machine to save yourself the effort of passing in the -oozie with every

203

command you type on the Unix terminal. Example 11-1 shows how to invoke the CLI
command with and without the environment variable. This option lists all the jobs in
the system.

The CLI executable oozie is available in the bin/ subdirectory
under the oozie client deployment directory. For the remainder of
this chapter, we will assume we have the oozie executable available
in our Unix path and we will skip the absolute path in our examples
for invoking the CLI.

Example 11-1. Using the OOZIE_URL environment variable

$ oozie jobs -oozie http://oozieserver.mycompany.com:11000/oozie
...

$ export OOZIE_URL=http://oozieserver.mycompany.com:11000/oozie
$ oozie jobs
...

The Oozie CLI tool can be finicky when it comes to the order of
the arguments. This is a common issue with a lot of the CLI tools
in the Hadoop ecosystem. So if you get some unexplained invalid
command errors, always pay attention to the sequence of the argu‐
ments in your command line. For instance, with this example, you
might get different results with oozie jobs -oozie <URL> and
oozie -oozie <URL> jobs.

In addition to the OOZIE_URL environment variable, OOZIE_TIMEZONE and OOZIE_AUTH
are two other variables that can make using the CLI tool easier, though most users
don’t need it as often as the server URL.

CLI Subcommands
The oozie CLI tool is feature rich and supports a lot of options. It’s covered exten‐
sively in the Oozie documentation.These options are organized into many subcom‐
mands. The subcommands are logical groupings of the different actions and options
that the CLI supports, and are listed here (some of these have only one command
option that serves one specific function, while the others have several options):

oozie version
Prints client version

oozie job
All job-related options

204 | Chapter 11: Oozie Operations

http://bit.ly/oozie-cli-utils

oozie jobs
Bulk status option

oozie admin
Admin options that deal with server status, authentication, and other related
details

oozie validate
Validate the job XML

oozie sla
SLA-related options

oozie info
Print detailed info on topics like supported time zone

oozie mapreduce
Special option to submit standalone MapReduce jobs via Oozie

oozie pig
Special option to submit standalone Pig jobs via Oozie

oozie hive
Special option to submit standalone Hive jobs via Oozie

oozie help
Get help on the CLI and its subcommands

Users can also get help on the CLI tool or specific subcommands by typing in the fol‐
lowing commands on the Oozie client machine’s Unix terminal.

$ oozie help
$ oozie help job
$ oozie help sla

Useful CLI Commands
In this section, we will touch on some of the more useful and interesting CLI com‐
mands that can make the user’s life easier. We will assume that the OOZIE_URL is set up
appropriately in our environment and hence skip the -oozie option in all of the CLI
examples we cover the rest of the way.

The validate subcommand
One of the primary complaints about Oozie is that the code-test-debug cycle can be a
little complicated with too many steps. Specifically, every time the job XML is modi‐
fied, it has to be copied to HDFS and users often forget this step and end up wasting a
lot of time. Even if they remember to do it, these steps can get annoyingly repetitive if

Oozie CLI Tool | 205

they find errors in the XML after executing the workflow and have to fix the XML
and iterate a few times to get it right. The validate command can be used to do
some basic XML validation on the job file before copying it to HDFS. This won’t
catch all the errors in the job definition, but it is definitely recommended for every
job XML file that users write. Although this only catches some basic syntax errors in
the XML, it can and will save some time:

$ oozie validate my_workflow.xml
$ oozie validate my_coordinator.xml

The job subcommand
The most commonly used CLI options are for submitting and checking the status of
jobs as we have seen in earlier chapters. The CLI has been designed for simplicity, and
it doesn’t matter whether the job in question is a workflow, coordinator, or a bundle;
the command tends to be the same. Following are the CLI commands to submit a job
(-submit) or to submit and run it in one shot (-run). The job ID is returned as shown
here if the command succeeds:

$ oozie job -config ./job.properties –submit
job: 0000006-130606115200591-oozie-joe-W

$ oozie job -config ./job.properties –run
job: 0000007-130606115200591-oozie-joe-W

It’s the following property during submission, usually defined in the job.properties file,
that tells the Oozie server what kind of job is being submitted or run. Only one of
these three properties can be defined per job submission, meaning a job can be either
a workflow, a coordinator, or a bundle:

oozie.wf.application.path
Path to a workflow application directory/file

oozie.coord.application.path
Path to a coordinator application directory/file

oozie.bundle.application.path
Path to a bundle application directory/file

The following commands are commonly used for monitoring as well as managing
running jobs. The -info option gives you the latest status information on the job and
the other options like -kill and -suspend are self-explanatory. You will need the job
ID for all of these commands. We have already seen many of these commands in
action throughout this book:

$ oozie job -info 0000006-130606115200591-oozie-joe-W
Job ID : 0000006-130606115200591-oozie-joe-W

Workflow Name : identity-WF

206 | Chapter 11: Oozie Operations

App Path : hdfs://localhost:8020/user/joe/ch01-identity/app
Status : RUNNING
Run : 0
User : joe
Group : -
Created : 2013-06-06 20:35 GMT
Started : 2013-06-06 20:35 GMT
Last Modified : 2013-06-06 20:35 GMT
Ended : -
CoordAction ID: -

Actions

ID Status

0000006-130606115200591-oozie-joe-W@:start: OK

0000006-130606115200591-oozie-joe-W@identity-MR RUNNING

$ oozie job –suspend 0000006-130606115200591-oozie-joe-W
$ oozie job –resume 0000006-130606115200591-oozie-joe-W
$ oozie job –kill 0000006-130606115200591-oozie-joe-W

The -info option for a coordinator job could print pages and pages of output
depending on how long it has been running and how many coordinator actions it has
executed so far. So there is a -len option to control the amount of output dumped
onto the screen. The default len is 1,000 and the coordinator actions are listed in
chronological order (oldest action first). However, this order is reversed and actions
are listed in reverse chronological order (newest action first) on the Oozie web UI for
better usability:

$ oozie job -info 0000084-141219003455004-oozie-joe-C -len 10

The other useful option under the job subcommand of the CLI is the -dryrun. It is
another form of validating the job XML, with the property file taken into account. It
might not look like it’s telling you much about a workflow, but it is still a good prac‐
tice to run it before submitting a job. For the coordinators, it tells you things like how
many actions will be run during the lifetime of the job, which can be useful informa‐
tion. Here is some sample output:

$ oozie job -dryrun -config wf_job.properties
OK

$ oozie job -dryrun -config coord_job.properties
***coordJob after parsing: ***
<coordinator-app xmlns="uri:oozie:coordinator:0.2" name="test-coord"
frequency="1" start="2014-12-22T02:47Z" end="2014-12-23T02:49Z"
timezone="UTC" freq_timeunit="DAY" end_of_duration="NONE">
...
</coordinator-app>

Oozie CLI Tool | 207

actions for instance
***total coord actions is 2 ***
...

Adding the -debug flag to the -job command can generate a lot of
useful information that can help with debugging. One great benefit
of the -debug option is that it prints the actual web services API
that the CLI command calls internally. This can come in handy for
users who are trying to develop Oozie client apps using the web
services API.

Sometimes users want to tweak and change a few properties of a running coordinator
or a bundle job. The -change option helps achieve this. Properties like the end-time
and concurrency of a coordinator are ideal for the -change option, which only
accepts a handful of properties. For instance, users may not want to stop and restart a
coordinator job just to extend the endtime. Starting with version 4.1.0, Oozie also
supports an -update option, which can update more properties of a running job via
the job.properties file than the -change option. Following are a few example com‐
mands showcasing both options. Using the -dryrun with the -update spits out all the
changes for the user to check before updating:

$ oozie job -change 0000076-140402104721144-oozie-joe-C -value
 endtime=2014-12-01T05:00Z

$ oozie job -change 0000076-140402104721144-oozie-joe-C -value
 endtime=2014-12-01T05:00Z\;concurrency=100\;2014-10-01T05:00Z

$ oozie job -config job.properties -update
 0000076-140402104721144-oozie-joe-C -dryrun

We recommend becoming conversant with the job –rerun option, as it helps with
the important task of reprocessing jobs (we will cover it in detail in “Reprocessing”
on page 222).

The jobs subcommand
The oozie CLI also provides a -jobs subcommand. This is primarily intended to be a
monitoring option. It handles jobs in bulk unlike the -job option that handles a spe‐
cific job. The basic -jobs command lists all the jobs in the system with their statuses.
By default, this lists only the workflow jobs in reverse chronological order (newest
first, oldest last) based on the job’s creation time. You can add the -jobtype flag to get
the coordinator or bundle jobs listed. If you print the coordinator jobs using the job
type=coordinator option, the different coordinators will be listed in reverse chrono‐
logical order based on the next materialization time of the next action in each one of
them. This command also takes the -len command to control the output printed on

208 | Chapter 11: Oozie Operations

to the screen and provides a rich set of filters. You can list the jobs filtered by a spe‐
cific user, job status, creation time, or some other criteria.

There is also a special -bulk option specifically meant for bundles. Oozie bundles in
large enterprises can get really hairy to monitor with multiple coordinators. -bulk
helps monitor the bundles with a variety of filters to organize the information better.
This option requires a bundle name, but the rest of the filters are optional.

Listed here are several useful examples of the -jobs subcommand:
$ oozie jobs
$ oozie jobs -jobtype coordinator
$ oozie jobs -jobtype=bundle
$ oozie jobs -len 20 -filter status=RUNNING
$ oozie jobs -bulk bundle=my_bundle_app
$ oozie jobs -bulk 'bundle=my_bundle_app;actionstatus=SUCCEEDED'
$ oozie jobs -bulk bundle=test-bundle\;actionstatus=SUCCEEDED

The -bulk option requires bundle name and not the bundle job ID.
Also, only the FAILED or KILLED jobs are listed by default. Use
the actionstatus filter to look at jobs that are in other states, as
shown in the preceding example. When using the CLI, escape the ;
or quote the entire filter string.

More subcommands
The admin subcommand provides users with support for some system-wide adminis‐
trative actions. One interesting option with this subcommand is the -queuedump flag
that dumps all the elements in the server queue. The MapReduce, Pig, and Hive sub‐
commands are available for submitting MapReduce, Pig, and Hive jobs right from the
command line without having to write a workflow job. These will run as standalone
actions and Oozie generates the workflow XML internally, saving some work for the
user. All the required JARs, libraries, and supporting files have to be uploaded to
HDFS beforehand as always. These jobs are created and run right away. Although
these CLI features (which are meant to submit action types) can come in handy occa‐
sionally.

The sla subcommand has been deprecated starting with Oozie ver‐
sion 4.0 since the new SLA framework explained in “JMS-Based
Monitoring” on page 220 has been implemented. Also, the hive
subcommand is a recent addition to the CLI to go with the pig and
mapreduce commands. As always, double-check the Oozie docu‐
mentation online to see what options are supported by the particu‐
lar version of the Oozie CLI you are using.

Oozie CLI Tool | 209

Oozie REST API
Oozie supports an HTTP-based REST API. This web service API is JSON-based and
all responses are in UTF8. Any HTTP client that can make web service calls can sub‐
mit and monitor Oozie jobs. There is library support in most programming lan‐
guages like Python for making HTTP REST calls. As you can guess, this API is useful
for interacting programmatically with Oozie. The use cases for this include automat‐
ing the monitoring of your Oozie jobs and building custom web UIs to render all that
information. Oozie’s own internal services like the Oozie CLI, Oozie’s web UI, and the
Java client API that we will discuss in “Oozie Java Client” on page 214 use this REST
API. Oozie documentation covers this API well, but we will get you up to speed in
this section with useful examples, tips, and tricks.

As mentioned earlier, if you run the oozie –job with the -debug flag, you will
actually see the exact REST API call printed for your reference as shown in
Example 11-2.

Example 11-2. The -debug option

$ oozie job -info 0000025-140522211231058-oozie-joe-C@80 -debug
GET http://oozieserver.mycompany.com:11000/oozie/v2/job/0000025-
140522211231058-oozie-joe-C@80?show=info
ID : 0000025-140522211231058-oozie-joe-C@80
--
Action Number : 80
Console URL : -
Error Code : -
Error Message : -
External ID : 0000273-140814212041682-oozie-joe-W
External Status : -
Job ID : 0000025-140522211231058-oozie-joe-C
Tracker URI : -
Created : 2014-12-18 01:14 GMT
Nominal Time : 2014-12-18 01:15 GMT
Status : SUCCEEDED
Last Modified : 2014-12-18 03:13 GMT
First Missing Dependency : -
--

The URI http://oozieserver.mycompany.com:11000/oozie is the OOZIE_URL where the
Oozie server is running. As of Oozie version 4.1.0, the server supports three different
versions of the REST API. Versions v0, v1, and v2 may have slightly different features,
interfaces, and responses. The following endpoints are supported in the latest version
v2 and the previous versions are not too different, but do check the documentation
for the specific details. Readers should be familiar with the listed subcommands from
the previous section on CLI.

210 | Chapter 11: Oozie Operations

http://bit.ly/REST-fielding
http://www.json.org/index.html
http://bit.ly/oozie-utf8
http://bit.ly/oozie-websvcs-api

• /versions
• /v2/admin
• /v2/job
• /v2/jobs
• /v2/sla

Since the Oozie CLI, REST API, and the Java client are all different
ways to do the same thing, the examples covered might have some
duplicate content. We do try to use different use cases in these
examples to minimize overlap and repetition.

Most readers are probably familiar with curl, the common command-line tool used
on many Unix systems to transfer data to and from a URL. Curl supports the HTTP
protocol among several other protocols and is often used for making web service calls
from the command line and from scripts on Unix systems. Run man curl on your
Unix box if you need more information on curl. In this section, we will mostly use
curl for showcasing the Oozie REST API. Following are some simple examples using
curl with the server’s response printed as well to give you a flavor of what’s returned
by Oozie:

$ curl "http://oozieserver.mycompany.com:11000/oozie/versions"
[0,1,2]

$ curl "http://oozieserver.mycompany.com:11000/oozie/v2/admin/status"
{"systemMode":"NORMAL"}

Since one of the primary uses for the web services API is enabling programmatic
access to the Oozie services, let’s take a look at a short and sweet example program in
Python that accesses a job status of a particular coordinator action and prints the
results:

#!/usr/bin/python
import json
import urllib2
url = 'http://oozieserver.mycompany.com:11000/oozie/v2/job/\
0000084-141219003455004-oozie-joe-C?show=info'
req = urllib2.Request(url)
print urllib2.urlopen(req).read()

Most of the responses from the Oozie web server are in JSON format. So readers are
advised to use JSON formatting and printing utilities to print the server’s response in
more readable formats. On most Unix systems, piping the JSON output through
python -m json.tool on the command line generates a readable output, as shown in
Example 11-3.

Oozie REST API | 211

Example 11-3. Handling JSON output

$ curl "http://oozieserver.mycompany.com:11000/oozie/v2/jobs?jobtype=bundle" \
 | python -m json.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
104 2187 104 2187 0 0 146k 0 --:--:-- --:--:-- --:--:-- 237k
{
 "bundlejobs": [
 {
 "acl": null,
 "bundleCoordJobs": [],
 "bundleExternalId": null,
 "bundleJobId": "0000083-141219003455004-oozie-joe-B",
 "bundleJobName": "test-bundle",
 ...
 ...
 "createdTime": "Thu, 01 Jan 2015 08:39:10 GMT",
 "endTime": null,
 "group": null,
 "kickoffTime": "Thu, 25 Dec 2014 01:25:00 GMT",
 "pauseTime": null,
 "startTime": null,
 "status": "SUCCEEDED",
 "timeOut": 0,
 "timeUnit": "NONE",
 "toString": "Bundle id[0000083-141219003455004-oozie-joe-B]
 status[SUCCEEDED]",
 "user": "joe"
 }
],
 "len": 50,
 "offset": 1,
 "total": 1
}

The examples so far have shown how to read status and other information from the
server using HTTP GET. Let’s now look at an example that submits or writes some‐
thing to the server using HTTP POST. Oozie’s REST API can be used to start and run
jobs.

When we submit a workflow or a coordinator (or even an action)
using the REST API, we have to send the job configuration as the
XML payload via the HTTP POST. Similar to what we do with the
CLI, artifacts like the JARs for UDFs, other libraries, and job XML
like the workflow.xml and the coordinator.xml have to be copied to
HDFS and be in place ahead of the submission. In that sense, the
Oozie REST API is not a complete solution for job submissions.
However, users can use HttpFS, the REST HTTP gateway for HDFS
to upload the files.

212 | Chapter 11: Oozie Operations

http://bit.ly/oozie-httpfs

We will see a complete example of submitting a Pig action via the REST API. Users
can submit Pig, MapReduce, and Hive actions as individual jobs without having to
write a workflow.xml, which Oozie will generate internally for running the job. This is
called proxy job submission and for a Pig job, the following configuration elements
are mandatory:

fs.default.name
(the NameNode)

mapred.job.tracker
(the JobTracker)

user.name
The username of the user submitting the job

oozie.pig.script
The actual Pig code, not a file path

oozie.libpath
HDFS directory that contains any JARs required for the job

oozie.proxysubmission
Must be set to true

Let’s now build an XML payload with the required configuration for our example
Pig job submission (we will keep the job simple with no UDF JARs or other special
requirements):

$ cat pigjob.xml

<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://nn.mycompany.com:8020</value>
 </property>
 <property>
 <name>mapred.job.tracker</name>
 <value>jt.mycompany.com:8032</value>
 </property>
 <property>
 <name>user.name</name>
 <value>joe</value>
 </property>
 <property>
 <name>oozie.pig.script</name>
 <value>
 A = load '/user/joe/rest_api/pig/input/pig.data' using
 PigStorage(',') AS (name:chararray, id:int);
 B = foreach A generate $0 as name;
 store B into '/user/joe/rest_api/pig/output';

Oozie REST API | 213

 </value>
 </property>
 <property><name>oozie.libpath
 </name>
 <value>/user/oozie/share/lib/pig/</value>
 </property>
 <property>
 <name>oozie.proxysubmission</name>
 <value>true</value>
 </property>
</configuration>

Given this configuration and the Pig code, let’s make the REST API call for the proxy
job submission—if it’s successful, you will get a job ID returned as shown here:

$ curl -X POST -H "Content-Type: application/xml;charset=UTF-8" -d @pigjob.xml \
 ”http://oozieserver.mycompany.com:11000/oozie/v1/jobs?jobtype=pig"

{"id":"0000082-141219003455004-oozie-joe-W"}

Oozie Java Client
In addition to the REST API, Oozie also supports a Java client API for easy integra‐
tion with Java code. It supports the same kind of operations and is actually a wrapper
on top the REST API. We won’t spend a lot of time explaining it here, but readers can
refer to the Oozie documentation for more details. The brief example should give you
a feel for the client code and the key classes in the Java package (the code shown here
should be self-explanatory for most Java programmers):

import java.util.Properties;

import org.apache.oozie.client.OozieClient;
import org.apache.oozie.client.WorkflowJob;
import org.apache.oozie.client.WorkflowAction;

OozieClient myOozieClient
 = new OozieClient(“http://oozieserver.mycompany.com:11000/oozie");
// Create job configuration and set the application path
Properties myConf = myOozieClient.createConfiguration();
myConf.setProperty(OozieClient.APP_PATH,
 "hdfs://nn.mycompany.com:8020/user/joe/my-wf-app");
myConf.setProperty("jobTracker", "jt.mycompany.com:8032");
myConf.setProperty("inputDir", "/user/joe/input");
myConf.setProperty("outputDir", "/user/joe/output

// Submit and start the workflow job
String jobId = myOozieClient.run(conf);

// Wait until the workflow job finishes printing the status every 30 seconds
while (myOozieClient.getJobInfo(jobId).getStatus() == Workflow.Status.RUNNING) {
 System.out.println("Workflow job running ...");

214 | Chapter 11: Oozie Operations

http://bit.ly/oozie-client

 Thread.sleep(30 * 1000);
}

System.out.println("Workflow job completed ...");
System.out.println(myOozieClient.getJobInfo(jobId));

If users want to write a client to connect to a secure Hadoop cluster, Oozie’s Java API
provides another client class (org.apache.oozie.client.AuthOozieClient) that
they can plug in seamlessly. The client needs to be initialized as shown here:

AuthOozieClient myOozieClient = new
 AuthOozieClient(“http://oozieserver.mycompany.com:11000/oozie");

This client supports Kerberos HTTP SPNEGO authentication, pseudo/simple
authentication, and anonymous access for client connections. Users can also create
their own client that supports custom authentication (refer to the Oozie documenta‐
tion for more details).

The oozie-site.xml File
As is customary with all the tools in the Hadoop ecosystem, Oozie has its own “site”
XML file on the server node, which captures numerous settings specific to operating
Oozie. A lot of the settings that define operational characteristics and Oozie exten‐
sions are specified in this oozie-site.xml file. We have been covering a lot of those set‐
tings across many chapters of this book if and when the context presented itself; for
example, many of the security settings were covered in detail in “Oozie Security” on
page 154. But there are several more settings available for tuning various aspects of
Oozie. The defaults work well in most cases and users will never have to tune most of
these settings. But some settings are more useful than others.

Also, following normal Hadoop conventions, an oozie-default.xml is deployed that
captures all the default values for these settings and also serves as reference documen‐
tation for what the server is actually running. These settings can be overridden with
your own setting in the oozie-site.xml. Be sure to review the sample oozie-default.xml
available as part of the Apache Oozie documentation to familiarize yourself with the
various settings and options available. We will cover some more of those settings in
this chapter, but not all.

It can be very educational to browse through the oozie-default.xml
file. It can be a quick reference to a lot of the features, options,
limits, and possible extensions. Users sometimes are not aware of
the options available to them or the system limits that are configu‐
rable. So just browsing these “default” files and values can be eye
opening for new users of any Hadoop tool in general and Oozie in
particular.

The oozie-site.xml File | 215

http://bit.ly/oozie-custom-auth
http://bit.ly/oozie-custom-auth
http://bit.ly/oozie-default

The best source of truth for all server configuration is the Oozie web UI of the opera‐
tional Oozie system (Figure 11-1). Clicking on the System Info tab on the UI lets
users see the current configuration that the server is running with. And clicking on
the + sign next to the setting of interest expands it and shows the value. This is way
easier than fumbling through the site and default XML files trying to figure out which
property is where and what value it is set to. The figure below shows the relevant part
of the UI. This information is also available via the REST API, though not available
through the CLI.

Figure 11-1. Server configuration

One basic setting is the oozie.services property. Example 11-4 shows the complete
list of services supported by Oozie. You should turn on or off the services of your
choice in the oozie-site.xml file. This is for the Oozie administrator to define and
manage.

Example 11-4. List of Oozie services

 <property>
 <name>oozie.services</name>
 <value>
 org.apache.oozie.service.SchedulerService,

216 | Chapter 11: Oozie Operations

 org.apache.oozie.service.InstrumentationService,
 org.apache.oozie.service.MemoryLocksService,
 org.apache.oozie.service.UUIDService,
 org.apache.oozie.service.ELService,
 org.apache.oozie.service.AuthorizationService,
 org.apache.oozie.service.UserGroupInformationService,
 org.apache.oozie.service.HadoopAccessorService,
 org.apache.oozie.service.JobsConcurrencyService,
 org.apache.oozie.service.URIHandlerService,
 org.apache.oozie.service.DagXLogInfoService,
 org.apache.oozie.service.SchemaService,
 org.apache.oozie.service.LiteWorkflowAppService,
 org.apache.oozie.service.JPAService,
 org.apache.oozie.service.StoreService,
 org.apache.oozie.service.CoordinatorStoreService,
 org.apache.oozie.service.SLAStoreService,
 org.apache.oozie.service.DBLiteWorkflowStoreService,
 org.apache.oozie.service.CallbackService,
 org.apache.oozie.service.ShareLibService,
 org.apache.oozie.service.CallableQueueService,
 org.apache.oozie.service.ActionService,
 org.apache.oozie.service.ActionCheckerService,
 org.apache.oozie.service.RecoveryService,
 org.apache.oozie.service.PurgeService,
 org.apache.oozie.service.CoordinatorEngineService,
 org.apache.oozie.service.BundleEngineService,
 org.apache.oozie.service.DagEngineService,
 org.apache.oozie.service.CoordMaterializeTriggerService,
 org.apache.oozie.service.StatusTransitService,
 org.apache.oozie.service.PauseTransitService,
 org.apache.oozie.service.GroupsService,
 org.apache.oozie.service.ProxyUserService,
 org.apache.oozie.service.XLogStreamingService,
 org.apache.oozie.service.JvmPauseMonitorService
 </value>
 <description>
 All services to be created and managed by Oozie Services singleton.
 Class names must be separated by commas.
 </description>
 </property>

 <property>
 <name>oozie.services.ext</name>
 <value>
 </value>
 <description>
 To add/replace services defined in 'oozie.services' with custom
 implementations. Class names must be separated by commas.
 </description>
 </property>

The oozie-site.xml File | 217

The Oozie Purge Service
One of Oozie’s many useful services that can be managed through the settings
in the oozie-site.xml is the database purge service. As you know, Oozie uses a
database for its metadata and state management. This database has to be periodically
cleaned up so that we don’t bump into database-related performance issues. This
service—the purge service—can be turned on by enabling
org.apache.oozie.service.PurgeService. The server allows users to tune several
aspects of the purge service (e.g., how soon to purge workflow jobs, how often the
purge service should run, etc.). Do keep in mind that the purge service removes only
completed and successful jobs; it never touches the failed, killed, suspended, or
timed-out jobs. Table 11-1 shows some of the settings that can be tuned to manage
the purge service.

Table 11-1. PurgeService settings
Setting Default

value
Description

oozie.service.PurgeService.older.than 30 Completed workflow jobs older than
this value, in days, will be purged by
the PurgeService.

oozie.service.PurgeService.coord.older.than 7 Completed coordinator jobs older than
this value, in days, will be purged by
the PurgeService.

oozie.service.PurgeService.bundle.older.than 7 Completed bundle jobs older than this
value, in days, will be purged by the
PurgeService.

oozie.service.PurgeService.purge.old.coord.action false Whether to purge completed
workflows and their corresponding
coordinator actions of long-running
coordinator jobs if the completed
workflow jobs are older than
the value specified in
oozie.service.PurgeService.older.than

oozie.service.PurgeService.purge.limit 100 Completed Actions purge: limit each
purge to this value. This will make
sure the server is not spending too
much time and resources purging and
overloading the server for other
operations.

218 | Chapter 11: Oozie Operations

Setting Default
value

Description

oozie.service.PurgeService.purge.interval 3600 Interval at which the purge service
will run, in seconds. This and the
previous setting lets you decide
whether you want to run short purges
more often or run long purges less
often.

With long-term coordinator jobs like the ones that run for a year or
two, the purge service by default does not purge completed
workflows belonging to that job even past the purge time limits for
workflows as long as the coordinator job is still running. This used
to be a common source of confusion and problem for users. The
solution was to end the coordinator jobs and recycle them every
week or month or whatever the DB load dictated. So the
setting oozie.service.PurgeService.purge.old.coord.action
was introduced in version 4.1.0 to allow users to purge successfully
completed actions even if they belong to running coordinators.

Job Monitoring
Job monitoring is an integral part of any system for effective operation and manage‐
ment. For a system like Oozie that often deals with time- and revenue-critical jobs,
monitoring those jobs is paramount. For instance, if a job fails or runs longer than
expected, it is important to know what happened and take remedial action in a timely
fashion. Oozie provides multiple ways to monitor the jobs:

User Interface
Oozie web UI displays the jobs and the associated status and timelines. This UI is
very basic and users can only browse jobs.

Polling
Users can write their own custom monitoring system and poll Oozie using the
REST API or Java API that we covered earlier in this chapter to get the latest job
information.

Email
Oozie workflow supports an Email action that can send an email when a work‐
flow action finishes.

Callback
Oozie provides a callback framework where a user can pass the callback URL
during workflow submissions. When a job/action finishes, Oozie notifies
through the user-defined callback URL and passes the status as payload. This

Job Monitoring | 219

notification service follows a best effort approach and provides no guarantees.
More details on this notification feature can be found in the Apache Oozie docu‐
mentation for both workflows and coordinators.

These approaches implement some parts of an effective job monitoring system, but
there are significant shortcomings with each. So the Oozie community decided to
implement a monitoring system based on JMS to tackle this problem from the
ground up. This is a recent initiative starting with Oozie version 4.0.0.

JMS-Based Monitoring
Oozie supports publishing job information through any JMS-compliant message bus
and the consumer can asynchronously receive the messages and handle them using
custom processing logic. There are two types of notifications: job and SLA. The first
one publishes the job status information that includes when the job started, comple‐
ted, and so on. Currently, Oozie only supports status change notification for coordi‐
nator actions and workflow jobs. There is no support yet for coordinator jobs,
workflow actions, and bundle jobs.

The second notification type addresses SLA monitoring. SLAs are very important for
mission-critical applications and that information usually feeds daily executive dash‐
boards and other operational reports in large enterprises. Oozie’s SLA notifications
primarily include various kinds of SLA “met” and “missed” messages. Until version
4.0.0, Oozie supported SLA monitoring in a rather passive way where clients had to
poll Oozie to get the SLA information and then determine the status themselves. In
post 4.0.0 versions, users can define the expected SLA and the subsequent behavior
through workflow and coordinator definition. Oozie pushes the SLA messages
through JMS as soon as it is determined. There is also support for a REST API for
clients to poll for the status. Moreover, Oozie can send an email when an SLA event
occurs. Users can also visually view the SLA status through the new SLA tab of the
Oozie UI.

Installation and configuration
The Oozie administrator has to install the JMS-based message bus to support this fea‐
ture. After the message bus is properly installed, the Oozie server needs to be config‐
ured through the oozie-site.xml file. The configuration details are covered in the
official Apache Oozie documentation.

Most of the testing in Oozie for this feature happened with
ActiveMQ, but it should work well with any other JMS-compliant
message bus. With that said, readers will probably be better off
sticking with ActiveMQ to the extent possible.

220 | Chapter 11: Oozie Operations

http://bit.ly/oozie-workflow-notif
http://bit.ly/oozie-coord-notif
http://bit.ly/oozie-sla
http://bit.ly/oozie-notif-config
http://activemq.apache.org

Consuming JMS messages
The main tenet of the JMS-based notification system is that Oozie makes the job and
SLA status messages available through a push-based model. The primary focus of this
feature is not the presentation or the UI layer. Although Oozie provides a basic and
generic UI for all, users are encouraged to design their own UI based on these JMS
messages because monitoring UI requirements tends to be quite varied and specific at
every deployment.

In order to consume the JMS messages, clients needs to write a conventional JMS
consumer. Oozie provides the JMS topic name, message format, and message selec‐
tors. Oozie is also flexible in that it allows the users to configure the JMS topic name
and selectors. JMS selector is a feature by which the clients can skip the messages they
are not interested in. More details on this subject can also be found in the Apache
Oozie documentation.

Oozie Instrumentation and Metrics
Oozie code is very well instrumented and it can be used to closely monitor
the performance of the server. Several samplers, timers, and counters are generated
by this instrumentation, and it can be enabled by turning on the
org.apache.oozie.service.InstrumentationService service. These metrics are
available through the instrumentation log on the server and the web services API
using the admin/instrumentation endpoint (refer to the documentation for more
details). Listed here are some sample JVM variables that can help you manage Oozie
server’s Java process:

 free.memory
 max.memory
 total.memory

Starting with Oozie version 4.1.0, a new and improved metrics service has been
implemented with the intention of eventually replacing the existing instrumentation
service. It is turned off by default in 4.1.0, but will become the primary and only
source of metrics over the course of the next few releases. This new service is based
on the codahale metrics package and is API-compatible with the existing instrumen‐
tation service. The newer metrics are a lot more accurate and detailed and come with
very little changes to the output format. The biggest drawback of the existing instru‐
mentation service is that the metrics are accumulated over time going all the way
back to when the Oozie server was started. This can become stale over time. The new
metrics don’t suffer from this limitation and support a sliding time window for its cal‐
culations. Users can turn these metrics on by enabling the following service:

<property>
 <name>oozie.services.ext</name>
 <value>

Oozie Instrumentation and Metrics | 221

http://bit.ly/oozie-jms-notif
http://bit.ly/oozie-jms-notif
http://bit.ly/oozie-monitoring
http://bit.ly/oozie-codahale-metrics

 org.apache.oozie.service.MetricsInstrumentationService
 </value>
</property>

The two metrics services don’t work in parallel and users have to
pick one or the other. If the new metrics package is enabled, the
admin/instrumentation REST endpoint and the Instrumentation
tab on the UI will be replaced by the admin/metrics endpoint and
the Metrics tab, respectively.

Reprocessing
Reprocessing is an important operational undertaking in any complex system. We
briefly touched on how bundles help with managing and reprocessing pipelines in
Chapter 8. We will now look at reprocessing in detail and see how Oozie supports it
at the workflow, coordinator, and bundle levels. In a production environment, job
reprocessing is a very common and critical activity. There are three scenarios when a
user needs to rerun the same job:

• The job failed due to a transient error.
• The job succeeded but the input data was bad.
• The application logic was flawed or there was a bug in the code.

As you can see, the second and third scenarios can force reprocessing even when the
jobs have succeeded. Oozie provides convenient ways to reprocess completed jobs
through the CLI or the REST API. Reprocessing is driven through the job -rerun
subcommand and option of the Oozie CLI. Let’s first look at workflow reprocessing.

Workflow Reprocessing
Rerunning a workflow job is fairly straightforward and much simpler compared to
the coordinator or the bundle. But Oozie does enforce a few constraints for reproc‐
essing. Workflow jobs should be in a SUCCEEDED, FAILED, or KILLED state to be eligible
for reprocessing. Basically it should be in a terminal state. The following command
will rerun a workflow job that is already done:

$ oozie job -rerun 0000092-141219003455004-oozie-joe-W -config job.properties

In order to rerun a workflow on Oozie versions before 4.1.0, you
have to specify all of the workflow properties (in the job.properties
file). This is slightly different from the coordinator and bundle
reprocessing, which reuses the original configuration as explained
later in this section. This inconsistency has been fixed in Oozie
4.1.0 and workflows can also reuse the original properties now.

222 | Chapter 11: Oozie Operations

While the previous example will try to rerun the workflow, there are a few more
details that will determine what exactly happens with that command. We cover some
of the key aspects here:

• It’s the user’s responsibility to make sure the required cleanup happens before
rerunning the workflow. As you know, Hadoop doesn’t like the existence of an
output directory and the prepare element introduced in “Action Types” on page
43 exists just for this reason. It’s always a good idea to use the prepare element in
every action in all workflows to make the actions retryable. This may not be use‐
ful for normal processing, but will be a huge help during reprocessing.

• There are two configuration properties relevant to rerunning workflows,
oozie.wf.rerun.skip.nodes and oozie.wf.rerun.failnodes. We can use one
or the other, not both. As always, they can be added to the job.properties file or
passed in via the -D option on the command line.

• The property oozie.wf.rerun.skip.nodes is used to specify a comma-separated
list of workflow action nodes to be skipped during the rerun.

• By default, workflow reruns start executing from the failed nodes in the prior
run. That’s why if you run the command in the preceding example on a success‐
fully completed workflow, it will often return without doing anything. The prop‐
erty oozie.wf.rerun.failnodes can be set to false to tell Oozie that the entire
workflow needs to be rerun. This option cannot be used with the
oozie.wf.rerun.skip.nodes option.

• There is a workflow EL function named wf:run() that returns the number of the
execution attempt for this workflow. Workflows can make some interesting deci‐
sions based on this run number if they want to.

One of the advantages of the workflow retries requiring the job
properties is that you could potentially give it a different workflow
application path and different parameters. This can help with one-
off fixes for one retry of the workflow without affecting the other
runs. But this feature comes with a lot of caveats, so be careful to
match up the old and new workflow pretty closely.

Here are a couple of examples (the first command will rerun a workflow that succee‐
ded during the first try; the second command will skip a couple of nodes during
reprocessing):

$ oozie job -rerun 0000092-141219003455004-oozie-oozi-W
-config job.properties -Doozie.wf.rerun.failnodes=false

$ oozie job -rerun 0000092-141219003455004-oozie-oozi-W
-config job.properties -Doozie.wf.rerun.skip.nodes=node_A,node_B

Reprocessing | 223

Coordinator Reprocessing
Coordinator actions can be reprocessed as long as they are in a completed state. But
the parent coordinator job itself cannot be in a FAILED or KILLED state. Users can
select the coordinator action(s) to rerun using either date(s) or action number(s). In
addition, a user also has the option to specify either contiguous or noncontiguous
actions to rerun. To rerun the entire coordinator job, a user can give the actual start
time and end time as a range. However, a user can only specify one type of option in
one retry attempt, either date or action number. For the coordinator reruns, Oozie
reuses the original coordinator definition and configuration.

During reprocessing of a coordinator, Oozie tries to help the retry attempt by clean‐
ing up the output directories by default. For this, it uses the <output-events> specifi‐
cation in the coordinator XML to remove the old output before running the new
attempt. Users can override this default behavior using the –noCleanup option.

Moreover, a user can also decide to reevaluate the instances of data (current()/
latest()) using the –refresh option. In this case, Oozie rechecks all current()
instances and recalculates/rechecks the latest().

For example, the following command shows how to rerun a set of coordinator actions
based on date. It also removes the old files and recalculates the data dependencies.
This command reruns the actions with the nominal time between
2014-10-20T05:00Z to 2014-10-25T20:00Z and individual actions with nominal time
2014-10-28T01:00Z and 2014-10-30T22:00Z:

$ oozie job -rerun 0000673-120823182447665-oozie-hado-C -refresh
-date 2014-10-20T05:00Z::2014-10-25T20:00Z, 2014-10-28T01:00Z,
2014-10-30T22:00Z

The next command demonstrates how to rerun coordinator actions using action
numbers instead of dates. It also doesn’t clean up the old output data files created in
the previous run and doesn’t recalculate the data dependencies. The command reruns
the action number 4 and 7 through 10:

$ oozie job -rerun 0000673-120823182447665-oozie-hado-C -nocleanup
-action 4,7-10

Bundle Reprocessing
Bundle reprocessing is basically reprocessing the coordinator actions that have been
run under the auspices of this particular bundle invocation. It does provide options to
rerun some of the coordinators and/or actions corresponding to some of the dates.
The options are -coordinator and -date. It’s easier to explain the usage through
examples. Refer to the following examples with the responses captured to show what
happens when a bundle is reprocessed:

224 | Chapter 11: Oozie Operations

$ oozie job -rerun 0000094-141219003455004-oozie-joe-B -coordinator test-coord
Coordinators [test-coord] of bundle 0000094-141219003455004-oozie-joe-B
are scheduled to rerun on date ranges [null].

$ oozie job -rerun 0000094-141219003455004-oozie-joe-B -coordinator test-coord
 -date 2014-12-28T01:28Z
Coordinators [test-coord] of bundle 0000094-141219003455004-oozie-joe-B
are scheduled to rerun on date ranges [2014-12-28T01:28Z].

$ oozie job -rerun 0000094-141219003455004-oozie-joe-B -coordinator test-coord
-date 2014-12-28T01:28Z::2015-01-06T00:30Z
Coordinators [test-coord] of bundle 0000094-141219003455004-oozie-joe-B
are scheduled to rerun on date ranges [2014-12-28T01:28Z::2015-01-06T00:30Z].

$ oozie job -rerun 0000094-141219003455004-oozie-joe-B -date 2014-12-28T01:28Z
All coordinators of bundle 0000094-141219003455004-oozie-joe-B are scheduled
to rerun on the date ranges [2014-12-28T01:28Z].

With bundle reprocessing, you are actually rerunning a specific
bundle ID, but the -coordinator option just needs the coordinator
names of interest, not IDs. Oozie will find the specific coordinator
action IDs to rerun. As for the -date option, enter the exact nomi‐
nal time of the coordinator action you want to rerun or a date
range using the X::Y syntax to cover all nominal times in that
range. In some versions of Oozie, using a comma-separated list of
dates results in some strange behaviors.

Server Tuning
An Oozie server running on decent-sized hardware usually performs well in most
deployments. With that said, like any legitimate software service, there are various
limits and performance issues that Oozie bumps into once in a while. There are sev‐
eral configurations and settings that can be tuned through the oozie-site.xml file that
we introduced in “The oozie-site.xml File” on page 215.

JVM Tuning
As we already covered, the Oozie server is a Tomcat web server that runs on a Java
Virtual Machine (JVM). Like any JVM application, memory is a major tunable for the
Oozie server. By default, the server is configured to run with 1 GB of memory. This is
controlled by the following line in the file oozie-env.sh under the
<INSTALLATION_DIR>/conf directory. Oozie administrators can modify and
upgrade the memory allocation by editing this line and restarting the server:

export CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"

Server Tuning | 225

In case of performance issues, monitoring the load on the Oozie
server process and analyzing the JVM performance metrics will
help. All of the typical JVM concerns (e.g., memory, threads,
garbage collection, etc.) apply to the Oozie server as well. The
instrumentation and metrics covered in “Oozie Instrumentation
and Metrics” on page 221 can be a huge help in debugging these
issues.

Service Settings
Oozier server is implemented using the Service Layers Pattern. The server is com‐
posed of many distinct services as listed in “The oozie-site.xml File” on page 215. One
of the advantage of this design is that these logical services can be independently con‐
figured and tuned. Oozie has exposed many settings through oozie-site.xml for each
of these services. We will look at few important services and their settings in this sec‐
tion.

The CallableQueueService
Of the many services that make up the Oozie service, the CallableQueueService is
the most important from a performance perspective. This is the core work queue that
drives all server-side activity. There are a handful of settings for this specific service in
the oozie-site.xml file, and Table 11-2 captures the most important ones from a tuning
perspective.

Table 11-2. CallableQueueService settings
Setting Default

value
Description

oozie.service.CallableQueueService.queue.size 10000 Max callable queue size.

oozie.service.CallableQueueService.threads 10 Number of threads used for executing
callables

oozie.service.Callable
QueueService.callable.concurrency

3 Maximum concurrency for a given callable
type. Each command is a callable type
(submit, start, run, signal, job, jobs,
suspend, resume, etc.). Each action type is
a callable type (MapReduce, Pig, SSH, FS,
sub-workflow, etc.). All commands that
use action executors (action-start, action-
end, action-kill and action-check) use the
action type as the callable type.

226 | Chapter 11: Oozie Operations

http://bit.ly/oozie-slp-def

The Queue in the service name might be slightly misleading. This
is not a user-facing queue that manages just the job submissions
and other user requests. This is an internal queue that’s used by
Oozie code during processing. The queue items are various
callables, which is an Oozie implementation primitive. User
actions like scheduling a coordinator or submitting a workflow gets
translated into many callables internally and that’s what this
queue manages.

The default value for oozie.service.CallableQueueService.queue.size is 10,000,
which is a decent size that works for most use cases. But if you notice some poor
response times and unsatisfactory performance from Oozie, you can use the -admin
subcommand of the CLI to look at the queue. The commands here tell us the current
size of the queue, in addition to listing all the items that are occupying the queue.
There are 549 items in this queue:

$ oozie admin -queuedump | wc -l
549

$ oozie admin -queuedump
[Server Queue Dump]:
delay=0, elements=org.apache.oozie.command.coord.CoordActionInput
CheckXCommand@71ab437d
delay=64, elements=org.apache.oozie.command.coord.CoordActionInput
CheckXCommand@e1995a0
delay=26829, elements=org.apache.oozie.command.coord.CoordActionInput
CheckXCommand@6661ee03
delay=7768, elements=org.apache.oozie.command.coord.CoordActionInput
CheckXCommand@3c246ecb
...
...
**
[Server Uniqueness Map Dump]:
coord_action_input_0005771-141217180918836-oozie-oozi-C@241=
Sat Jan 10 23:58:21 UTC 2015
suspend_0056165-140725012140409-oozie-oozi-W=
Fri Jan 09 07:56:57 UTC 2015
action.check_0056171-140725012140409-oozie-oozi-W@pig-node1=
Sat Jan 10 18:31:30 UTC 2015
coord_action_input_0005792-141217180918836-oozie-oozi-C@113=
Sat Jan 10 23:58:52 UTC 2015
suspend_0055992-140725012140409-oozie-oozi-W=
Sat Jan 10 04:05:17 UTC 2015
coord_action_input_0005902-141217180918836-oozie-oozi-C@109=
Sat Jan 10 23:57:57 UTC 2015
action.check_0056156-140725012140409-oozie-oozi-W@pig-node1=
Sat Jan 10 18:31:30 UTC 2015
...
...

Server Tuning | 227

While the queue size is rarely the problem, Oozie’s setting for the number of threads
is rather conservative because Oozie cannot make any assumptions about the hard‐
ware size and resources at its disposal. In real production systems, users often bump
the oozie.service.CallableQueueService.threads from 10 to 50 or even 100
depending on the server capacity. For best results, increasing the number of callable
queue threads should also be accompanied by increasing the Oozie server’s VM
heap size and GC parameters. Closely related to the number of threads is the
oozie.service.CallableQueueService.callable.concurrency setting. Oozie’s
callables have a notion of a callable type. This setting controls the maximum con‐
currency for any one callable type. The default of 3 means only 3 out of the 10 threads
at any give time can be dedicated to any one type of callable. You could potentially list
and browse the queue and understand the callable types and tune this concurrency
number accordingly. In most cases, just proportionally increasing this to go with the
thread count will suffice. For example, if you bump the number of threads to 100,
increase the concurrency to 30. There are few more things to tune with the Callable
QueueService, but these three settings will get you over the performance hump in
most deployments.

The RecoveryService
The other interesting service is the Oozie RecoveryService. This is also an internal
service, is not meant to be user facing, and has nothing to do with user-level job
recovery or reprocessing. As you can tell, Oozie is a complicated distributed system
that manages jobs on Hadoop, an even more complex system. There are many signal‐
ing, notification, and callback systems in place that Oozie leverages for dependency
management, data availability checks, and the like. It’s almost inevitable that things
will go wrong and notifications will be missed or signals will be lost given all the
moving parts in play. So Oozie has implemented a recovery service, which keeps an
eye on the jobs and the queue and recovers actions and jobs that appear to be hung or
lost in space. The service itself runs every 60 seconds and looks for actions older than
the configured number of seconds.

Table 11-3 shows the interesting settings that drive the recovery service. In real low-
latency pipelines, it might be worthwhile to tune these default numbers down so the
recovery happens quicker. Users sometimes complain about how the coordinator is
still in the RUNNING state for a few minutes even after the corresponding workflow has
completed successfully. If these delays bother the user, the following settings are the
ones they have to look at closely.

228 | Chapter 11: Oozie Operations

Table 11-3. RecoveryService settings
Setting Default

value
Description

oozie.service.RecoveryService.interval 60 Interval at which the
RecoveryService will run, in
seconds.

oozie.service.RecoveryService.wf.actions.older.than 120 Age of the actions which are
eligible to be queued for
recovery, in seconds.

oozie.service.RecoveryService.coord.older.than 600 Age of the coordinator jobs or
actions which are eligible to be
queued for recovery, in seconds.

oozie.service.RecoveryService.bundle.older.than 600 Age of the bundle which that are
eligible to be queued for recovery,
in seconds.

The other thing to keep an eye on from a performance perspective
is the database statistics and tuning. We can’t get into the details
here (because a lot of it depends on the particular DB system
chosen), but having a DBA tune the MySQL or Oracle server and
optimize things like DB connections can have a big impact on
Oozie’s performance.

Oozie High Availability
Oozie introduced high availability (HA) in version 4.1. The idea of the HA feature is
to remove the single point of failure, which is the Oozie server. The Oozie server, as
you might have noticed throughout this book, is stateless. It stores all state informa‐
tion in the database. When the server process or the server machine goes down, the
existing jobs on Hadoop obviously continue to work, but all the new requests to the
Oozie server will fail and not get processed. This is where an HA setup helps. In
Oozie HA, another Oozie server or a bank of multiple Oozie servers can run in paral‐
lel and if one server is down, the system continues to work with the other server han‐
dling the requests. These servers work in a true hot-hot fashion and any server can
handle any client request.

The multiple Oozie servers are usually fronted by a software load-balancer or a vir‐
tual IP or a DNS round-robin solution so that the Oozie CLI or the REST API can use
a single address to access the server and the multiple HA servers are hidden behind it.
Otherwise, if the clients were talking to one specific server in this HA setup, it would
require code or configuration change to switch the server to another when that server
fails. This is not desirable nor practical. Using a load-balancer type architecture

Oozie High Availability | 229

means that Oozie HA has the added benefit of distributing the load across two or
more servers in addition to being fault tolerant.

Oozie HA makes sense only if the database runs in a different machine than the
Oozie server and also supports multiple, concurrent connections. The derby database
that is shipped with Oozie by default does not work for HA, as it does not support
multiple connections. If the crash of an Oozie server also takes down the DB, the
Oozie system will be down regardless. That’s why it’s recommended that the DB runs
on other machines and also runs in the database HA mode so the system does not
have any single points of failure.

Oozie HA is built on top of Apache Zookeeper, which is an open source server that
helps with distributed coordination and Apache Curator, which simplifies the use of
Zookeeper. It’s beyond the scope of this book to get into the details of these systems.

Apache Zookeeper can be a complicated service to manage and
maintain. It is another distinct piece of software that Oozie HA
introduces into your environment and some readers may have con‐
cerns around that. We recommend that readers gain some working
knowledge of Zookeeper if they are interested in running Oozie
HA.

While most Oozie client calls are independent requests that can go to any server and
the server can respond after consulting the DB, the oozie job –log presents some
interesting challenges in the HA mode. The Oozie logs are stored on the server where
the job runs. So if the -log request goes to a specific server, it may or may not find
the logs locally. It has to then talk to the other servers to fetch the relevant logs. This
feature is also implemented using Zookeeper.

The other problem with -log is this: what if the server with the logs
is down or unreachable? This scenario has not been handled yet in
Oozie 4.1, and can only be solved with a major change to Oozie’s
logging subsystem in a future release. So even with HA, be pre‐
pared to see some failures with -log if a server or two are down.

Given the stateless nature of the Oozie server, even in the non-HA mode, a crashed
server can be brought back up with very limited loss of functionality except for the
requests submitted during the time the server was down. The server can start from
where it left off as long as it has access to the DB when it comes back up. There are
several approaches to running a couple of Oozie servers in a hot-warm or a hot-cold
setup with the DB server deployed on a different box that has been implemented suc‐
cessfully in various enterprises for fault tolerance. Readers are encouraged to under‐

230 | Chapter 11: Oozie Operations

http://zookeeper.apache.org
http://curator.apache.org

stand and evaluate the various trade-offs before jumping all in and enabling Oozie
HA.

Example 11-5 shows the required and optional configuration settings for enabling
Oozie HA. These settings must be added to the oozie-site.xml file on all the Oozie
servers running HA (refer to the Oozie documentation for more details on the HA
setup).

Example 11-5. Oozie HA settings

<property>
 <name>oozie.services.ext</name>
 <value>
 org.apache.oozie.service.ZKLocksService,
 org.apache.oozie.service.ZKXLogStreamingService,
 org.apache.oozie.service.ZKJobsConcurrencyService,
 org.apache.oozie.service.ZKUUIDService
 </value>
</property>
...
<property>
 <name>oozie.zookeeper.connection.string</name>
 <value>localhost:2181</value>
</property>
...
<property>
 <name>oozie.zookeeper.namespace</name>
 <value>oozie</value>
</property>
...
<property>
 <name>oozie.base.url</name>
 <value>http://my.loadbalancer.hostname:11000/oozie</value>
</property>
...
<property>
 <name>oozie.instance.id</name>
 <value>hostname</value>
</property>

Debugging in Oozie
Debugging Oozie can be a challenge at times. While Hadoop itself is notoriously
complicated when it comes to debugging and error logging, Oozie adds another layer
on top and manages jobs through a launcher. New users often find this confusing as
most Hadoop actions redirect their stdout/stderr to the launcher mapper, but those
actions also run their own MapReduce jobs.

Debugging in Oozie | 231

http://bit.ly/oozie-ha

In reality, tracking down the job logs is not that hard once users get comfortable with
Oozie’s execution model, but there is a steep learning curve. Hopefully, this book in
general and this section in particular helps clarify and simplify things. The Oozie web
UI actually has rich content when it comes to monitoring, though some users may
complain that it takes to many clicks and windows to get to the required information.
But at least everything is there.

The landing page of the Oozie UI has status information on all the jobs with the focus
being on the workflow Jobs tab by default. Users can click and switch to the coordina‐
tor or bundle tab and see those jobs as well. This gives a nice overview of all the jobs
running in the system. This information is similar to what users can see with oozie
job –info (as covered in “Oozie CLI Tool” on page 203). This UI also has the System
Info tab (as explained in “The oozie-site.xml File” on page 215). Let’s look at the job
information. Figure 11-2 shows the main Oozie UI.

Figure 11-2. Job status

All jobs are clickable, and clicking on a workflow brings up a window with more
interesting information. In this page, you are seeing all the information concerning
this workflow job. You see the status of all the actions that make up this workflow.
You can also see the Job Definition and Job Configuration tabs, which capture the
workflow.xml and job.properties, respectively. This is very convenient, as users have all
job-related information in one place. The Job Log tab has Oozie-level job logging and
might not be too useful for debugging Hadoop jobs. And the Job DAG tab captures
the workflow DAG in a visual fashion. This UI is captured in Figure 11-3 with the
main action highlighted.

232 | Chapter 11: Oozie Operations

Figure 11-3. Workflow job details

The individual workflow actions are also clickable, and by clicking on the specific
action, you get to the most useful action logs. The action-specific UI is captured in
Figure 11-4.

Figure 11-4. Workflow action details

Debugging in Oozie | 233

The Console URL is our window into action-level debugging. That’s the URL that
takes us to the launcher mapper on the Hadoop ResourceManager (RM), the Job
Tracker (JT), or the Hadoop Job History Server (JHS) if the job has already comple‐
ted. You can get to the launcher mapper by clicking on the lens icon highlighted in
Figure 11-4. Once you are on the Hadoop UI, then the normal Hadoop log analysis
begins. What we need to look at is the log of the single map task (launcher mapper)
corresponding to this job. Both stdout and stderr are captured in those logs.

In the same Action UI, we can see a Child Job URLs tab, which contains the Hadoop
job URLs for all the child MapReduce jobs that the launcher kicks off to execute the
actual action, whether it is Hive, Pig, or something else. Clicking on the lens icon in
this UI also takes us to the corresponding Hadoop UI for the job. Users should look
at both the launcher mapper logs and the logs for the actual MapReduce job(s)
spawned for the action as part of debugging. Figure 11-5 shows the child URL for an
example action.

Figure 11-5. Action child URL

Basically, debugging a Hadoop action might involve debugging two (or more)
Hadoop jobs, and users can use the Oozie UI as the starting point to get to them. This

234 | Chapter 11: Oozie Operations

UI also has all the information about the bundle, coordinator, workflow, action, job
properties, and so on. Users should get comfortable navigating through all this infor‐
mation on the Oozie UI and that will make debugging job failures a lot easier.

Oozie Logs
In “Debugging in Oozie” on page 231, we saw how to get to all the job and action
information. In this section, we will see where to find Oozie-level logs on the server.
All the Oozie server-side logs can be found under the <INSTALLATION_DIR>/logs/
subdirectory. The main server log is called oozie.log and it gets rotated hourly. The
instrumentation log covered in “Oozie Instrumentation and Metrics” on page 221 is
another useful resource and it gets rotated daily. The catalina.* files capture the web-
server-level logging and can come in handy for problems related to the Tomcat web
server. Following is a sample ls from the logs/ directory showing some of the key
logs, both current and rotated logs:

$ ls
catalina.2015-01-09.log
catalina.out
oozie-instrumentation.log.2015-01-09
oozie-instrumentation.log
oozie.log-2015-01-10-20
oozie.log-2015-01-10-21
oozie.log

The Oozie logs are also available via the CLI command oozie job
–log and the Oozie web UI. Those logs are just filtered versions of
the oozie.log file sent to the client for the particular job ID(s).

Developing and Testing Oozie Applications
Given the complexity of deploying and debugging Oozie applications, coming up
with an efficient develop-test-debug process is very important. Following are some
recommendations on how to approach development of Oozie applications (some of
these are just best practices and common sense tips, and you will do well to incorpo‐
rate these into your development processes):

• Develop Oozie applications in an incremental fashion. It might be too much to
expect to write a workflow with 15 actions and test and get it running in one
shot. Start with the first action and make sure it works via the workflow. Then
expand incrementally.

• Detach Oozie job development from the individual action development. It is a
bad idea to debug Hive and Pig issues via Oozie workflows. Make sure you first
develop the Hive or Pig code separately and get it working before trying to put it

Debugging in Oozie | 235

into an Oozie workflow. It is extremely inefficient to write a brand-new Hive or
Pig script and test it through Oozie for the first time. It’s a lot easier to catch sim‐
ple Hive and Pig errors using their respective CLI clients.

• Expanding on the previous suggestion, when you are developing bundles with
many coordinators interconnected by data dependencies or complex workflows
with many fork/joins, it might be better to make sure the Oozie application logic
works as intended before adding complex, long-running actions. In other words,
build the shell of your Oozie application with fake actions and see if the control
flow works the way you want it to. A simple shell action that just does an echo
Hello is often good enough to test the Oozie parts of your application. You can
then replace these fake shell actions with real actions.

• Develop your job XMLs using an XML editor instead of a text editor. Use the
validate and dryrun options of the Oozie CLI liberally to catch simple errors.

• Write scripts to automate simple steps during development and testing. For
example, every time you change your workflow XML, your script could run a
validate command, remove the existing file/dir from HDFS, and copy the new
file/directory to HDFS and run the app (if that’s required). Forgetting to copy the
files to HDFS is a common oversight that costs users many minutes during every
iteration.

• Parameterize as much as possible. This makes the jobs very flexible and saves
time during testing. For example, if you are developing a bundle and have to run
it many times to test and fix during development, parameterize the kick-off-
time control setting. This saves you time because you don’t have to reload the
bundle XML to HDFS every time just for changing the kick-off-time. It can
and should be controlled externally, outside the XML, using parameterization.

Application Deployment Tips
As you know, Oozie applications are deployed to HDFS. There are not a whole lot of
rules on how the deployment should look except for a couple of conventions that
we’ve already covered in the book. For instance, the workflow, coordinator, and bun‐
dle specification files are usually named a certain way and are under the application
root directory. The job JARs are usually deployed under the lib/ subdirectory under
the app root and get added to the CLASSPATH automatically. Other than these, there
are not a whole lot of rules. New Oozie users always have many questions like
whether the bundle, coordinator, and workflow files should be at the top level under
the app root directory or should they be under multiple nested directory levels.

We can make it work with any deployment structure we choose, but certain organiz‐
ing principles are recommended. Ideally, all files can be at the top level for simple
bundles with just a handful of files. If the bundle is complex with many coordinators

236 | Chapter 11: Oozie Operations

and if each coordinator in turn has many workflows with many JARs, it may be better
to organize them in separate multilevel directories to reduce clutter. There may also
be cases where the same coordinator might be part of different bundles and the same
workflows may be part of different coordinators. Also, JARs are often shared between
multiple workflows. For these scenarios, it’s important that we don’t duplicate and
copy files and directories all over HDFS. So a mix of central directories at the top
level for the shared components and nested directories for nonshared components
will work well. These layouts are captured in Figure 11-6.

Figure 11-6. Application deployment on HDFS

Common Errors and Debugging
In this section, we cover some common errors and give various tips and solutions.
We hope this section will save you some time by being a quick reference guide for
some of the common mistakes we have seen repeated on Oozie.

A lot of the Oozie-level errors that the server throws are usually
E0710 or E0701. You will see these errors in the Oozie UI and these
errors usually mean it’s not a Hadoop issue, but something in the
Oozie system.

Debugging in Oozie | 237

Hive action and/or DistCp action doesn’t work: Oozie’s out-of-the-box workflow
actions are segregated as core actions and action extensions. The extension actions
are <hive>, <shell>, <email>, <distcp>, and <sqoop>; they are all enabled by default
on most recent Oozie deployments. But if you do see strange errors running these
extension actions, make sure the following setting is enabled in oozie-site.xml (you
can check this on the Oozie UI as well, like we saw in “The oozie-site.xml File” on
page 215):

 <property>
 <name>oozie.service.ActionService.executor.ext.classes</name>
 <value>
 org.apache.oozie.action.email.EmailActionExecutor,
 org.apache.oozie.action.hadoop.HiveActionExecutor,
 org.apache.oozie.action.hadoop.ShellActionExecutor,
 org.apache.oozie.action.hadoop.SqoopActionExecutor,
 org.apache.oozie.action.hadoop.DistcpActionExecutor
 </value>
 </property>

 <property>
 <name>oozie.service.SchemaService.wf.ext.schemas</name>
 <value>
 shell-action-0.1.xsd,shell-action-0.2.xsd,email-action-0.1.xsd,
 hive-action-0.2.xsd,hive-action-0.3.xsd,hive-action-0.4.xsd,
 hive-action-0.5.xsd,sqoop-action-0.2.xsd,sqoop-action-0.3.xsd,
 ssh-action-0.1.xsd,ssh-action-0.2.xsd,distcp-action-0.1.xsd,
 oozie-sla-0.1.xsd,oozie-sla-0.2.xsd
 </value>
 </property>

Some actions work, others don’t: The Hive query or DistCp works fine on the com‐
mand line and the workflow XML looks perfect, but the action still fails. This could
be a library issue, so make sure the following setting to use the sharelib is set to true
in your job.properties file (you might see a JA018 error in the Oozie UI for this issue):

oozie.use.system.libpath=true

Workflow XML schema errors: Always be aware of the XML schema version and
features. When you see errors like the one shown here, check the schema:

Error: E0701 : E0701: XML schema error, cvc-complex-type.2.4.a:
Invalid content was found starting with element 'global'. One of
'{"uri:oozie:workflow:0.3":credentials, "uri:oozie:workflow:0.3":start}'
is expected.

Issues with the <global> section: The example error previously shown relates to sup‐
port for the <global> section. It’s only supported in workflow XML version 0.4 or
higher, as shown here:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="my-test-wf">

238 | Chapter 11: Oozie Operations

Also, with some of the extension actions like hive or shell, the <global> section
might not work. Remember that the action definitions have their own schema version
as well and confirm that you are using supported features both at the workflow level
and the action level.

Schema version errors with action types: The action schema versions are different
and often a lower number than the workflow schema version. Sometimes, users cut
and paste the same version from the workflow header and that may not be the right
version number. If you see the following error with a Hive action for instance, you
should check the version number (it is probably too high):

Error: E0701 : E0701: XML schema error, cvc-complex-type.2.4.c: The matching
wildcard is strict, but no declaration can be found for element 'hive'.

Syntax error with the HDFS scheme: Another annoyingly common error is a typo
and syntax error in the workflow.xml or the job.properties file while representing the
HDFS path URIs. It is usually represented as ${nameNode}/${wf_path} and users
often end up with a double slash (//) following the NameNode in the URI. This could
be because the NameNode variable has a trailing / or the path variable has a leading /
or both. But read the error messages closely and catch typos and mistakes with the
URI. For instance, you will see the following error message if the job.properties file
has a typo in the workflow app root path:

Error: E0710 : E0710: Could not read the workflow definition, File does not
exist: //user/joe /oozie/my_wf/workflow.xml

Workflow is in a perpetual RUNNING state: You see that all the actions in a work‐
flow have completed either successfully or with errors including the end states (end or
kill), but the workflow is not exiting and is hung in the RUNNING state. This can hap‐
pen if you have a typo or a syntax error in the aforementioned end states. This usually
happens due to some error in the message section in the kill node as shown here:

 <kill name="fail">
 <message>Hive failed, error message[${$$wf:errorMessage
 (wf:lastErrorNode())}]</message>
 </kill>

Workflow action is running long after the completion of its launcher mapper:
Most of the workflow actions utilize a map-only Hadoop job (called launcher mapper)
to launch the actual action. In some instances, users might find that the launcher
mapper has completed successfully according to the ResourceManager or the Job
Tracker UI. However, the corresponding action in the Oozie UI might still be in a
running state long after the launcher mapper has finished. This inconsistency can
exist for as long as 10 minutes. In other words, the subsequent actions in the work‐
flow might not be launched for 10 minutes. The possible reason for this delay is some
issue with Hadoop’s callback that Oozie uses to get the status of the launcher mapper.
More specifically, the root cause can be Hadoop not being able to invoke the callback

Debugging in Oozie | 239

just after the launcher mapper finishes or Oozie missing the Hadoop callback.
The more common reason is Hadoop missing the callback due to security/firewall or
other reasons. A quick check on the ResourceManager or JobTracker log will
show the root cause. Oozie admins can also decrease the value of the
oozie.service.ActionCheckerService.action.check.delay property from the
default 600 seconds to 180 seconds or so in oozie-site.xml. This property determines
the interval between two successive status checks for any outstanding launcher map‐
pers. The reduction of this interval will definitely reduce the duration of the inconsis‐
tency between Oozie and the RM/JT. But it will also increase the load on the Oozie
server due to more frequent checks on Hadoop. Therefore, it should only be used as
an interim solution while the root cause is found and ultimately fixed.

MiniOozie and LocalOozie
There are ways to test and verify Oozie applications locally in a development environ‐
ment instead of having to go to a full-fledged remote server. Unfortunately, these test‐
ing frameworks are not very sophisticated, well maintained, or widely adopted. So
users have not had great success with these tools and these approaches may never
substitute real testing against a real Oozie server and a Hadoop cluster. But it might
still be worthwhile to try to get it working for your application. These approaches
should work at least for simple workflows and coordinators:

MiniOozie
Oozie provides a junit test class called MiniOozie for users to test workflow and
coordinator applications. IDEs like Eclipse and IntelliJ can directly import the
MiniOozie Maven project. Refer to the test case in the Oozie source tree under
minitest/src/test/java for an example of how to use MiniOozie. MiniOozie uses
LocalOozie internally.

LocalOozie
We can think of LocalOozie as embedded Oozie. It simulates an Oozie deploy‐
ment locally with the intention of providing an easy testing and debugging envi‐
ronment for Oozie application developers. The way to use it is to get an
Oozieclient object from a LocalOozie class and use it like a normal Java Oozie
API client.

Another alternative when it comes to testing and debugging is to
run an Oozie server locally against a pseudodistributed Hadoop
cluster and test everything on one machine. We do not recommend
spending too much time trying to get these approaches working if
you bump into issues.

240 | Chapter 11: Oozie Operations

http://junit.org
http://bit.ly/oozie-mini
http://bit.ly/oozie-local

The Competition
You might wonder what other products are available for solving the problem of job
scheduling and workflow management for Hadoop. Oozie is not the only player in
this field and we briefly introduce a few other products in this section. The overall
consensus in the Hadoop community is that these alternatives are not as feature-rich
and complete as Oozie, though they all have their own strengths and do certain
things well. Most of these products do not have the same widespread adoption and
community support that Oozie enjoys. The list is by no means exhaustive or com‐
plete:

Azkaban
The product that’s closest to Oozie in terms of customer adoption is Azkaban, an
open source batch workflow scheduler created at LinkedIn. It has a lot of usabil‐
ity features and is known for its graphical user interface.

Luigi
Spotify’s Luigi is another open source product that supports workflow manage‐
ment, visualization, and building complex pipelines on Hadoop. It’s known for its
simplicity and is written in Python.

HAMAKE
Hadoop Make or HAMAKE is a utility that’s built on the principles of dataflow
programming. It’s client-based and is supposed to be lightweight.

A thorough comparison and analysis of these products are beyond the scope of this
book. We do believe Oozie’s rich feature set, strong user community, and solid docu‐
mentation set it apart, but we encourage you to do your own research on these prod‐
ucts if interested. Oozie is often accused of being complex and having a steep learning
curve, and we hope this book helps address that particular challenge.

The Competition | 241

https://azkaban.github.io
http://bit.ly/oozie-luigi
http://bit.ly/oozie-hamake

Index

A
Abdelnur, Alejandro, 3, 4
action element, 43
action JARs, 148, 149-152
action-type element, 43
action:output() function, 68
ActionExecutor class

about, 22, 181-185, 182
check() method, 182
isCompleted() method, 182
kill() method, 182
start() method, 181

actions
about, 13, 40, 42-43
asynchronous, 73, 188-202
coordinator execution control, 112-113
coordinator lifecycle, 109
coordinator parameters, 124-132
custom types, 180-188
debugging, 238
deploying new type, 186-188, 200
execution model, 40-42
JAR files and, 34
synchronous, 73, 181-188
time-based, 101
types of, 43-71, 149

ActiveMQ, 220
actualTime() function, 133
ADD JAR statement, 63
admin subcommand, 209
Amazon S3 system, 39
Apache Hadoop (see Hadoop jobs)
Apache Oozie (see Oozie)
Apache Tomcat, 21, 31

app-path element, 61, 103
applications (see Oozie applications)
archive element

hive action, 63
java action, 54
map-reduce action, 46
pig action, 57
shell action, 68
sqoop action, 71

arg element
distcp action, 65
java action, 54
sqoop action, 71
ssh action, 70

args element, 70
argument element

hive action, 62
pig action, 57
shell action, 68

asynchronous actions, 73, 188-202
asynchronous data processing, 172-174
authentication

HTTP, 161
Kerberos, 31, 156

AuthOozieClient class, 215
Azkaban product, 241

B
backward compatibility

Oozie supported, 11
shared library and, 35

big data processing
about, 1
common solution for, 2-4

243

recurrent problems, 1
body element, email action, 66
building Oozie, 25
bundle.xml file, 20
bundles

about, 3, 18, 137-138
debugging jobs, 232
execution controls, 141-144
functions, 20
lifecycle of, 145
parameters, 19, 86
release history, 10
reprocessing, 224
specification overview, 140-141
state transitions, 145
use case, 18
usefulness of, 138-140
variables, 19

C
CallableQueueService class, 226-228
capture-output element

about, 185
java action, 54
shell action, 68
ssh action, 70

case element, 81
catalina.out file, 31
cc element, email action, 66
chgrp element, fs action, 60
chmod element, fs action, 60
CLASSPATH environment variable, 236
client (see Oozie client)
codahale metrics package, 221
Command class, 22
command element

sqoop action, 71
ssh action, 70

command-line tool (see oozie command-line
interface)

conf.setJar() method, 167
config-default.xml file, 91
configuration element

about, 83, 85
bundles, 141
distcp action, 64
fs action, 59
hive action, 62
java action, 54

map-reduce action, 45
pig action, 56
shell action, 68
sqoop action, 71
sub-workflow action, 61

constants (EL), 87
control nodes, 13, 76-82
controls element, 113, 141
coord:days() function, 110
coord:endOfDays() function, 110
coord:endOfMonths() function, 111
coord:months() function, 111
coordinator.xml file, 20, 104
coordinators

about, 3, 15-17, 99
action life cycle, 109
bundles and, 18, 137
data dependency example, 122-123, 134-136
debugging jobs, 232
execution controls, 112-113
expressing data dependency, 117-122
functions, 20, 110-111
job lifecycle, 108-109
Oozie web interface, 106-108
parameters, 19, 86, 110-111, 124-132
release history, 10
reprocessing, 224
submitting, 103-106
template components, 101-103
time-based example, 113-115
triggering mechanisms, 100
use case, 17
variables, 19

core-site.xml file, 24
counters (Hadoop), 87
cron jobs

about, 168
coordinator jobs and, 17
cron specification, 169-172
simple coordinator example, 168
workflows and, 39

cron specification, 169-172
current() function, 121, 124-128, 131, 224

D
DAG (direct acyclic graph), 13
data availability trigger

about, 100
coordinator application example, 134-136

244 | Index

coordinator example, 122-123
dataset parameters, 124-132
expressing data dependency, 117-122
parameter passing to workflows, 132-134

data dependency
data-availability triggers, 100, 117-136
expressing, 117-122
HCatalog-based, 174
time-based triggers, 100-115

data pipelines, 18, 39, 100
databases

Oozie supported, 22, 24
purge service, 218-219
setting up, 32-34

dataIn() function, 132
dataOut() function, 133
dataset element

about, 117
coordinator example, 122-123
defining, 118-120
parameterization of instances, 124-132
timelines and, 120

datasets element, 123
dateOffset() function, 134
DAY variable, 118
days() function, 110
debugging

about, 231-235
common errors, 237-240
develop-test-debug process, 235
logs and, 235

decision node, 14, 79-81
delete element, fs action, 60
Derby database, 22
direct acyclic graph (DAG), 13
distcp action, 64-66, 74, 149, 238
DistCp tool, 39
DONE state (actions), 96
DONE_WITH_ERROR state

bundles, 145
coordinators, 109

E
edge (gateway) node, 40, 66
EL (Expression Language)

constants, 87
expressions, 89
functions, 54, 68, 88, 110-111, 124-134,

177-180

variables, 87, 89
email action, 66, 74, 82
end node, 13, 77
end-instance element, 121
end-time parameter, 100
endOfDays() function, 110
endOfMonths() function, 111
END_MANUAL state (actions), 96
END_RETRY state (actions), 96
env element, 48
env-var element, shell action, 68
environment variables, 68
error element, 6, 43, 82
error messages

catalina.out file, 31
Oozie server, 30, 37

ERROR state (actions), 82, 96
exec element, shell action, 68
execution controls, 112-113
extJS library, 23, 26

F
FAILED state

actions, 96, 110
bundles, 145
coordinators, 109
workflows, 81, 94

FIFO (First in First Out), 113
file element

hive action, 63
java action, 54
map-reduce action, 46
pig action, 57
shell action, 68
sqoop action, 71

First in First Out (FIFO), 113
fork node, 14, 77-79
formatTime() function, 134
frequency parameter

about, 100
dataset element and, 124
day-based, 110
EL functions for, 110
month-based, 111
workflow executions and, 15

fs action, 59-60, 74
fs.default.name property, 45, 213
fs:fileSize() function, 89
functions

Index | 245

bundle, 20
coordinator, 20, 110-111
EL, 54, 68, 88, 110-111, 124-134, 177-180
UDFs, 58
workflow, 20, 88

future() function, 124

G
gateway (edge) node, 40, 66
GB constant (EL), 87
global element, 83, 238
grep command, 67

H
HA (high availability), 229-231
Hadoop cluster

action execution model, 40
configuring Kerberos security, 31
installing, 28
security considerations, 155-158

Hadoop counters, 87
Hadoop JARs, 147
Hadoop jobs

about, 1
actions and, 13
classpath, 21
common solution for, 2-4
configuring for proxy users, 29
Java action and, 55
map-reduce action and, 53
Oozie's role, 3
pig action and, 56
recurrent problems, 1

hadoop.security.auth_to_local property, 161
hadoop:counters() function, 20
HAMAKE utility, 241
HCatalog, 174
HDFS

accessing from command line, 7
action execution model, 41, 43
application deployment and, 21
CLI tools, 60
fs action and, 60
HCatalog, 174
packaging and deploying applications, 7
shared library installation and, 34

hdfs dfs commands, 7
high availability (HA), 229-231
hive action, 62-64, 74, 149, 238

hive subcommand, 209
hive.metastore.uris property, 62
host element, ssh action, 70
HOUR variable, 118
HTTP authentication, 161

I
IdentityMapper class, 4
IdentityReducer class, 4
input-events element, 120
inputformat element, 49
installation

basic requirements, 24
building Oozie, 25
configuring Kerberos security, 31
Hadoop, 28
Oozie client, 36
Oozie server, 26-28
shared library, 34

instance element, 121
InstrumentationService class, 221
ISO 8601 standard, 102

J
JAR files

actions and, 34
application deployment and, 20
design challenges, 148
Oozie origins, 147
overriding/upgrading, 151
precedence in classpath, 153
uber JAR, 167

java action, 43, 52-56, 74
Java client, 214
Java commands, 25
Java Servlet Container, 21
Java Virtual Machine (JVM), 225
java-opts element

distcp action, 64
java action, 54

JavaActionExecutor class, 193
JDBC driver

connection settings, 24
for MySQL, 32
for Oracle, 33

JMS (Java Message Service), 220-221
job subcommand, 206-208
job-tracker element

about, 6, 42, 83

246 | Index

distcp action, 64
hive action, 62
java action, 54
map-reduce action, 6, 44
pig action, 56
shell action, 68
sqoop action, 71

job-xml element
about, 84
fs action, 59
hive action, 62
map-reduce action, 45
pig action, 56
shell action, 68
sqoop action, 71

job.properties file
about, 7, 89-91
bundle configuration, 144
command-line option, 91
config-default.xml file and, 91
shared library, 149
workflow app path, 20

JobControl class, 2
jobs subcommand, 208
JobTracker

about, 6
actions and, 44
Hadoop configuration properties and, 45
port numbers and, 8

join node, 14, 77-79
JSP specification, 86
JVM (Java Virtual Machine), 225

K
KB constant (EL), 87
Kerberos authentication, 31, 156
keytab file, 156
kick-off-time element, 141-144
kill command, 30
kill node, 81
KILLED state

actions, 96, 110
bundles, 145
coordinators, 109
workflows, 81, 94

kinit command, 156
klist command, 161

L
Last In First Out (LIFO), 113
latest() function, 128-132, 224
launcher job, 40-42, 85
launcher mapper, 239
libraries

managing, 147-154
shared, 34

lifecycles
of bundles, 145
of coordinater jobs, 108-109
of coordinator actions, 109
of workflows, 94-97

LIFO (Last In First Out), 113
LocalOozie class, 240
logs (Oozie), 235
ls command, 67
Luigi product, 241

M
main class, 188-193
main-class element, java action, 54
map-reduce action

about, 6, 43-53
API support, 165-167
execution mode, 41, 74

Mapper class, 6
mapper element, 48
mapred API, 46, 165-167
mapred.job.queue.name property, 83, 93-94
mapred.job.tracker property, 45, 213
mapred.mapper.class property, 45
mapred.output.key.class property, 165
mapred.output.value.class property, 165
mapred.queue.name property, 85
mapred.reducer.class property, 45
mapreduce API, 46, 165-167
MapReduce jobs

action example, 50-51
action execution model, 40
Oozie's role, 3
simple Oozie example, 4-10
streaming example, 52

maps element, 49
MAP_IN counter (Hadoop), 87
MAP_OUT counter (Hadoop), 87
Maven command, 5, 25
MB constant (EL), 87
metrics service, 221

Index | 247

MiniOozie class, 240
MINUTE variable, 118
mkdir element, fs action, 60
monitoring jobs, 219-221
MONTH variable, 118
months() function, 111
move element, fs action, 60
MySQL database, 22, 32

N
name element, 92
name-node element

about, 42, 83
distcp action, 64
fs action, 59
hive action, 62
java action, 54
map-reduce action, 6, 44
pig action, 56
shell action, 68
sqoop action, 71

NameNode
actions and, 44
Hadoop configuration properties and, 45
port numbers and, 8
workflows and, 6

nominalTime() function, 133

O
offset() function, 124
ok element, 6, 43, 82
OK state (actions), 82, 96
OOME (OutOfMemory exception), 31
Oozie

about, 3
comparable products, 241
downloading, 11
meaning of name, 4
release history, 10-11
role in Hadoop ecosystem, 3
server architecture, 21-22
simple job example, 4
standard setup, 23-24
usage numbers, 12

Oozie applications, 13
(see also bundles; coordinators; workflows)
about, 13
debugging, 237-240
deployment model, 20

deployment tips, 236
developing, 235
packaging and deploying on HDFS, 7
parameterization, 86-89
simple Oozie job, 4-10
testing, 235

oozie CLI (see oozie command-line interface)
Oozie client

about, 23
action execution model, 40
installing, 36
security considerations, 158-162

oozie command-line interface
about, 203-209
coordinator submission, 103
finding Oozie server URL, 37
launching jobs, 40
monitoring job progress, 8
reporting completion state, 8
server communications, 21
subcommands, 204-209
trigger-based executions and, 99

Oozie jobs, 13
(see also bundles; coordinators; workflows)
about, 13
configuring, 83-86
functions, 19
monitoring, 219-221
parameters, 19
simple example, 4-10
variables, 19

Oozie server
about, 21, 23
action execution model, 41
configuring for MySQL, 32
configuring for Oracle, 33
installing, 26-28
security considerations, 158-162
starting, 29
stopping, 30
troubleshooting, 30, 37
tuning, 225
verifying, 30

Oozie web interface, 106-108
oozie-setup command, 35
oozie-site.xml file

about, 215-218
coordinator execution controls, 113
JDBC connection settings, 24

248 | Index

MySQL configuration, 32
output data size setting, 54
server tuning, 225
shared library, 151

oozie.action.max.output.data property, 54
oozie.action.output.properties property, 54, 68,

185
oozie.action.sharelib.for.pig property, 151
oozie.action.ssh.allow.user.at.host property, 70
oozie.authentication.kerberos.name.rules prop‐

erty, 161
oozie.bundle.application.path property, 144,

206
oozie.coord.application.path property, 206
oozie.email.from.address property, 66
oozie.email.smtp.auth property, 67
oozie.email.smtp.host property, 66
oozie.email.smtp.password property, 67
oozie.email.smtp.port property, 66
oozie.email.smtp.username property, 67
oozie.hive.defaults property, 64
oozie.launcher.* properties, 86
oozie.launcher.mapreduce.job.hdfs-servers

property, 65
oozie.libpath property, 213
oozie.log file, 31
oozie.pig.script property, 213
oozie.proxysubmission property, 213
oozie.service.ActionService.executor.ext.classes

property, 186
oozie.service.CallableQueueService.queue.size

property, 112
oozie.service.coord.default.max.timeout prop‐

erty, 113
oozie.service.coord.materialization.throt‐

tling.factor property, 112
oozie.service.ELService.latest-el.use-current-

time property, 128
oozie.service.HadoopAccessorSer‐

vice.action.configurations property, 83
oozie.service.WorkflowAppService.system.lib‐

path property, 151
oozie.services property, 216
oozie.use.system.libpath property, 91, 149, 154
oozie.war file, 23, 26-28
oozie.wf.application.path property, 91, 103, 206
oozie.wf.rerun.failnodes property, 223
oozie.wf.rerun.skip.nodes property, 223
Oracle database, 22, 33

org.apache.hadoop.mapred package, 46
org.apache.hadoop.mapreduce package, 46
OutOfMemory exception (OOME), 31
output-events element, 121, 224

P
PacMan system, 3
param element

hive action, 62
pig action, 57

parameters
bundle, 19, 86
coordinator, 19, 86, 110-111, 124-132
oozie-setup command, 35
workflow, 19, 86-89, 93-94, 132-134

parameters element, 92, 141
partitioner element, 49
path element, 78
PATH environment variables, 68
PAUSED state

bundles, 145
coordinators, 108

PAUSED_WITH_ERROR state
bundles, 145
coordinators, 109

PB constant (EL), 87
PID file, 30
pig action, 56, 56-58, 74, 149
pipes element, map-reduce action, 49
port numbers, 8
PostgreSQL database, 22
PREP state

actions, 96
bundles, 145
coordinators, 108
workflows, 94

prepare element
about, 6, 223
distcp action, 64
hive action, 62
java action, 54
map-reduce action, 45
pig action, 56
shell action, 68
sqoop action, 71

PREP_PAUSED state (bundles), 145
PREP_SUSPENDED state (bundles), 145
processes, killing, 30
program element, 49

Index | 249

propagate-configuration element, sub-
workflow action, 61

proxy job submission, 213
proxy users, 29, 161
PurgeService class, 218-219

Q
queue element, 55

R
READY state (actions), 109, 113
record-reader element, 48
record-reader-mapping element, 48
RECORDS counter (Hadoop), 87
RecoveryService class, 228
recursive element, 60
reduce element, 49
Reducer class, 6
reducer element, 48
REDUCE_IN counter (Hadoop), 87
REDUCE_OUT counter (Hadoop), 87
REGISTER statement, 58
reprocessing

about, 222
bundles, 224
coordinators, 224
workflows, 222

ResourceManager, 6, 44
REST API, 21, 210-214
rollup jobs, 122-123
RUNNING state

actions, 96, 110, 113
bundles, 145
coordinators, 108
workflows, 94, 239

RUNNING_WITH_ERROR state
bundles, 145
coordinators, 109

S
script element

hive action, 62
pig action, 42, 56

secure shell, 70, 74
security

about, 154
client to server, 158-162
custom credentials and, 162-165

HTTP authentication, 161
Kerberos authentication, 31, 156
Oozie to Hadoop, 155-158

server (see Oozie server)
shared library

installing, 34, 150
managing, 149

shell action, 67-72, 73, 74, 239
shell command

shell action and, 67-72
ssh action and, 70

SMTP server, 66, 74
SOX compliance, 139
sqoop action, 71, 74, 149
ssh action, 70, 74
start node, 13, 77
start-instance element, 121
start-time parameter, 15, 100, 124, 169
starting Oozie server, 29
START_MANUAL state (actions), 96
START_RETRY state (actions), 96
stopping Oozie server, 30
streaming element, map-reduce action, 48
sub-workflow action, 61, 74
subject element, email action, 66
SUBMITTED state (actions), 109
SUCCEEDED state

actions, 110
bundles, 145
coordinators, 108
workflows, 77, 94

SUSPENDED state
bundles, 145
coordinators, 108
workflows, 94

SUSPENDED_WITH_ERROR state
bundles, 145
coordinators, 109

synchronous actions, 73, 181-188
synchronous data processing, 172
system JARs, 147, 152
system-defined variables, 87
System.exit() method, 54, 82

T
TB constant (EL), 87
testing

keytab file, 157
new main class, 191

250 | Index

Oozie applications, 235
throttling factor, 112
time-based triggers

about, 100
coordinator actions, 101, 109
coordinator example, 113-115
coordinator examples, 101-108
coordinator job lifecycle, 108
coordinator parameters, 110-111
execution controls, 112-113

TIMEDOUT state (actions), 173
timelines, 120
TIMEOUT state (actions), 109, 172
timeout value, 113
timestamp() function, 88
to element, email action, 66
touchz element, fs action, 60
triggering mechanisms

about, 100
data availability, 100, 117-136
time-based, 100-115

troubleshooting
debugging and, 231-240
Oozie server, 30, 37

U
uber JAR, 167
UDFs (user-defined functions), 58
unified credential framework, 163
user interface for coordinator jobs, 106-108
user JARs, 148, 152
user-defined functions (UDFs), 58
USER_RETRY state (actions), 96

V
validate subcommand, 205
value element, 92
variables

bundle, 19
coordinator, 19
EL, 87, 89
preferred syntax, 89
system-defined, 87

workflow, 19, 87
verifying Oozie server, 30

W
WAITING state (actions), 109, 113
WebHDFS protocol, 65
wf:actionData() function, 54
wf:conf() function, 89
wf:errorCode() function, 88
wf:id() function, 20, 88, 88
wf:run() function, 223
workflow-app element, 76
workflow.xml file, 20, 40, 43
workflows, 13

(see also actions; control nodes)
about, 3, 13-14, 39
basic outline, 75-76
configuration examples, 93-94
coordinators and, 15-17, 100
debugging jobs, 232-235
functions, 20, 88
job configuration, 83-86
lifecycle of, 94-97
parameters, 19, 86-89, 93-94, 132-134
release history, 10
reprocessing, 222
simple Oozie example, 4-10
use case, 14
variables, 19, 87, 89

Workflows
EL expressions, 89

writer element, 49

X
XML, 5, 11
XSD (XML schema definition), 44, 185, 199,

238

Y
Yahoo!, 12
YEAR variable, 118

Index | 251

About the Authors
Mohammad Kamrul Islam is currently working at Uber on its Data Engineering
team as a Staff Software Engineer. Previously, he worked at LinkedIn for more than
two years as a Staff Software Engineer in their Hadoop Development team. Before
that, he worked at Yahoo! for nearly five years as an Oozie architect/technical lead.
His fingerprints can be found all over Oozie, and he is a respected voice in the Oozie
community. He has been intimately involved with the Apache Hadoop ecosystem
since 2009. Mohammad has a Ph.D. in computer science with a specialization in par‐
allel job scheduling from Ohio State University. He received his master’s degree in
computer science from Wright State University, Ohio, and bachelor’s in computer sci‐
ence from Bangladesh University of Engineering and Technology (BUET). He is a
Project Management Committee (PMC) member of both Apache Oozie and Apache
TEZ and frequently contributes to Apache YARN/MapReduce and Apache Hive. He
was elected as the PMC chair and Vice President of Oozie as part of the Apache Soft‐
ware Foundation from 2013 through 2015.

Aravind Srinivasan has been involved with Hadoop in general and Oozie in particu‐
lar since 2008. He is currently a Lead Application Architect at Altiscale, a Hadoop as a
service (HAAS) provider, where he helps customers with Hadoop application design
and architecture. His association with big data and Hadoop started during his time at
Yahoo!, where he spent almost six years working on various data pipelines for adver‐
tising systems. He has extensive experience building complicated low latency data
pipelines and also in porting legacy pipelines to Oozie. He drove a lot of Oozie’s
requirements as a customer in its early days of adoption inside Yahoo! and later spent
some time as a Product Manager on Yahoo!’s Hadoop team, where he contributed
further to Oozie’s roadmap. He also spent a year after Yahoo! at Think Big Analytics
(a Teradata company), a Hadoop consulting firm, where he got to consult on some
interesting and challenging big data integration projects at Facebook. He has a mas‐
ter’s in computer science from Arizona State University, and lives in Silicon Valley.

Colophon
The animal on the cover of Apache Oozie is a binturong (Arctictis binturong), a mostly
arboreal mammal that inhabits the dense rainforests of Southeast Asia. The meaning
of the name is unknown, having derived from an extinct language. While in fact a
member of the civet family, it is commonly referred to as a bearcat, as it resembles a
hybrid of the two creatures.

The binturong has a short muzzle, stiff white whiskers, and a long, stocky body
cloaked in coarse, dark fur. Five-toed and flat-footed, it stands on its hind legs to walk
on the ground, ambling much like a bear. The animal’s signature characteristic is its
thick, muscular tail; in addition to providing balance, it serves as an extra limb for

gripping branches. The tail is nearly the length of the binturong’s head and body,
which grows to two or three feet long.

Its hind legs rotate backward, allowing the binturong to maintain a strong grip on
trees even when climbing down headfirst. Despite being an avid climber, it lacks the
acrobaticism of primates and typically must descend to the ground to move between
trees. The binturong marks its territory as it roams by producing a distinctive musk,
often likened to the smell of buttered popcorn.

The binturong’s diet can include small mammals, insects, birds, rodents, and fish, but
it favors fruit, particularly figs. Binturongs are one of the only animals capable of
digesting the tough seed coat of the strangler fig, which cannot germinate unassisted.
The bearcat’s role in seed dispersal makes it crucial to its forest habitat.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Oozie
	Big Data Processing
	A Recurrent Problem
	A Common Solution: Oozie
	A Simple Oozie Job
	Oozie Releases
	Some Oozie Usage Numbers

	Chapter 2. Oozie Concepts
	Oozie Applications
	Oozie Workflows
	Oozie Coordinators
	Oozie Bundles

	Parameters, Variables, and Functions
	Application Deployment Model
	Oozie Architecture

	Chapter 3. Setting Up Oozie
	Oozie Deployment
	Basic Installations
	Requirements
	Build Oozie
	Install Oozie Server
	Hadoop Cluster
	Start and Verify the Oozie Server

	Advanced Oozie Installations
	Configuring Kerberos Security
	DB Setup
	Shared Library Installation
	Oozie Client Installations

	Chapter 4. Oozie Workflow Actions
	Workflow
	Actions
	Action Execution Model
	Action Definition

	Action Types
	MapReduce Action
	Java Action
	Pig Action
	FS Action
	Sub-Workflow Action
	Hive Action
	DistCp Action
	Email Action
	Shell Action
	SSH Action
	Sqoop Action

	Synchronous Versus Asynchronous Actions

	Chapter 5. Workflow Applications
	Outline of a Basic Workflow
	Control Nodes
	<start> and <end>
	<fork> and <join>
	<decision>
	<kill>
	<OK> and <ERROR>

	Job Configuration
	Global Configuration
	Job XML
	Inline Configuration
	Launcher Configuration

	Parameterization
	EL Variables
	EL Functions
	EL Expressions

	The job.properties File
	Command-Line Option
	The config-default.xml File
	The <parameters> Section

	Configuration and Parameterization Examples
	Lifecycle of a Workflow
	Action States

	Chapter 6. Oozie Coordinator
	Coordinator Concept
	Triggering Mechanism
	Time Trigger
	Data Availability Trigger

	Coordinator Application and Job
	Coordinator Action
	Our First Coordinator Job
	Coordinator Submission
	Oozie Web Interface for Coordinator Jobs

	Coordinator Job Lifecycle
	Coordinator Action Lifecycle
	Parameterization of the Coordinator
	EL Functions for Frequency
	Day-Based Frequency
	Month-Based Frequency

	Execution Controls
	An Improved Coordinator

	Chapter 7. Data Trigger Coordinator
	Expressing Data Dependency
	Dataset

	Example: Rollup
	Parameterization of Dataset Instances
	current(n)
	latest(n)

	Parameter Passing to Workflow
	dataIn(eventName):
	dataOut(eventName)
	nominalTime()
	actualTime()
	dateOffset(baseTimeStamp, skipInstance, timeUnit)
	formatTime(timeStamp, formatString)

	A Complete Coordinator Application

	Chapter 8. Oozie Bundles
	Bundle Basics
	Bundle Definition
	Why Do We Need Bundles?

	Bundle Specification
	Execution Controls

	Bundle State Transitions

	Chapter 9. Advanced Topics
	Managing Libraries in Oozie
	Origin of JARs in Oozie
	Design Challenges
	Managing Action JARs
	Supporting the User’s JAR
	JAR Precedence in classpath

	Oozie Security
	Oozie Security Overview
	Oozie to Hadoop
	Oozie Client to Server
	Supporting Custom Credentials

	Supporting New API in MapReduce Action
	Supporting Uber JAR
	Cron Scheduling
	A Simple Cron-Based Coordinator
	Oozie Cron Specification

	Emulate Asynchronous Data Processing
	HCatalog-Based Data Dependency

	Chapter 10. Developer Topics
	Developing Custom EL Functions
	Requirements for a New EL Function
	Implementing a New EL Function

	Supporting Custom Action Types
	Creating a Custom Synchronous Action

	Overriding an Asynchronous Action Type
	Implementing the New ActionMain Class
	Testing the New Main Class

	Creating a New Asynchronous Action
	Writing an Asynchronous Action Executor
	Writing the ActionMain Class
	Writing Action’s Schema
	Deploying the New Action Type
	Using the New Action Type

	Chapter 11. Oozie Operations
	Oozie CLI Tool
	CLI Subcommands
	Useful CLI Commands

	Oozie REST API
	Oozie Java Client
	The oozie-site.xml File
	The Oozie Purge Service
	Job Monitoring
	JMS-Based Monitoring

	Oozie Instrumentation and Metrics
	Reprocessing
	Workflow Reprocessing
	Coordinator Reprocessing
	Bundle Reprocessing

	Server Tuning
	JVM Tuning
	Service Settings

	Oozie High Availability
	Debugging in Oozie
	Oozie Logs
	Developing and Testing Oozie Applications
	Application Deployment Tips
	Common Errors and Debugging

	MiniOozie and LocalOozie
	The Competition

	Index
	About the Authors

